| File: | Externals/SOIL/stb_image_aug.c |
| Location: | line 3063, column 2 |
| Description: | Value stored to 'tga_palette_start' is never read |
| 1 | /* stbi-1.18 - public domain JPEG/PNG reader - http://nothings.org/stb_image.c |
| 2 | when you control the images you're loading |
| 3 | |
| 4 | QUICK NOTES: |
| 5 | Primarily of interest to game developers and other people who can |
| 6 | avoid problematic images and only need the trivial interface |
| 7 | |
| 8 | JPEG baseline (no JPEG progressive, no oddball channel decimations) |
| 9 | PNG 8-bit only |
| 10 | BMP non-1bpp, non-RLE |
| 11 | TGA (not sure what subset, if a subset) |
| 12 | PSD (composited view only, no extra channels) |
| 13 | HDR (radiance rgbE format) |
| 14 | writes BMP,TGA (define STBI_NO_WRITE to remove code) |
| 15 | decoded from memory or through stdio FILE (define STBI_NO_STDIO to remove code) |
| 16 | supports installable dequantizing-IDCT, YCbCr-to-RGB conversion (define STBI_SIMD) |
| 17 | |
| 18 | TODO: |
| 19 | stbi_info_* |
| 20 | |
| 21 | history: |
| 22 | 1.18 fix a threading bug (local mutable static) |
| 23 | 1.17 support interlaced PNG |
| 24 | 1.16 major bugfix - convert_format converted one too many pixels |
| 25 | 1.15 initialize some fields for thread safety |
| 26 | 1.14 fix threadsafe conversion bug; header-file-only version (#define STBI_HEADER_FILE_ONLY before including) |
| 27 | 1.13 threadsafe |
| 28 | 1.12 const qualifiers in the API |
| 29 | 1.11 Support installable IDCT, colorspace conversion routines |
| 30 | 1.10 Fixes for 64-bit (don't use "unsigned long") |
| 31 | optimized upsampling by Fabian "ryg" Giesen |
| 32 | 1.09 Fix format-conversion for PSD code (bad global variables!) |
| 33 | 1.08 Thatcher Ulrich's PSD code integrated by Nicolas Schulz |
| 34 | 1.07 attempt to fix C++ warning/errors again |
| 35 | 1.06 attempt to fix C++ warning/errors again |
| 36 | 1.05 fix TGA loading to return correct *comp and use good luminance calc |
| 37 | 1.04 default float alpha is 1, not 255; use 'void *' for stbi_image_free |
| 38 | 1.03 bugfixes to STBI_NO_STDIO, STBI_NO_HDR |
| 39 | 1.02 support for (subset of) HDR files, float interface for preferred access to them |
| 40 | 1.01 fix bug: possible bug in handling right-side up bmps... not sure |
| 41 | fix bug: the stbi_bmp_load() and stbi_tga_load() functions didn't work at all |
| 42 | 1.00 interface to zlib that skips zlib header |
| 43 | 0.99 correct handling of alpha in palette |
| 44 | 0.98 TGA loader by lonesock; dynamically add loaders (untested) |
| 45 | 0.97 jpeg errors on too large a file; also catch another malloc failure |
| 46 | 0.96 fix detection of invalid v value - particleman@mollyrocket forum |
| 47 | 0.95 during header scan, seek to markers in case of padding |
| 48 | 0.94 STBI_NO_STDIO to disable stdio usage; rename all #defines the same |
| 49 | 0.93 handle jpegtran output; verbose errors |
| 50 | 0.92 read 4,8,16,24,32-bit BMP files of several formats |
| 51 | 0.91 output 24-bit Windows 3.0 BMP files |
| 52 | 0.90 fix a few more warnings; bump version number to approach 1.0 |
| 53 | 0.61 bugfixes due to Marc LeBlanc, Christopher Lloyd |
| 54 | 0.60 fix compiling as c++ |
| 55 | 0.59 fix warnings: merge Dave Moore's -Wall fixes |
| 56 | 0.58 fix bug: zlib uncompressed mode len/nlen was wrong endian |
| 57 | 0.57 fix bug: jpg last huffman symbol before marker was >9 bits but less |
| 58 | than 16 available |
| 59 | 0.56 fix bug: zlib uncompressed mode len vs. nlen |
| 60 | 0.55 fix bug: restart_interval not initialized to 0 |
| 61 | 0.54 allow NULL for 'int *comp' |
| 62 | 0.53 fix bug in png 3->4; speedup png decoding |
| 63 | 0.52 png handles req_comp=3,4 directly; minor cleanup; jpeg comments |
| 64 | 0.51 obey req_comp requests, 1-component jpegs return as 1-component, |
| 65 | on 'test' only check type, not whether we support this variant |
| 66 | */ |
| 67 | |
| 68 | #include "stb_image_aug.h" |
| 69 | |
| 70 | #ifndef STBI_NO_HDR |
| 71 | #include <math.h> // ldexp |
| 72 | #include <string.h> // strcmp |
| 73 | #endif |
| 74 | |
| 75 | #ifndef STBI_NO_STDIO |
| 76 | #include <stdio.h> |
| 77 | #endif |
| 78 | #include <stdlib.h> |
| 79 | #include <memory.h> |
| 80 | #include <assert.h> |
| 81 | #include <stdarg.h> |
| 82 | |
| 83 | #ifndef _MSC_VER |
| 84 | #ifdef __cplusplus |
| 85 | #define __forceinline inline |
| 86 | #else |
| 87 | #define __forceinline |
| 88 | #endif |
| 89 | #endif |
| 90 | |
| 91 | |
| 92 | // implementation: |
| 93 | typedef unsigned char uint8; |
| 94 | typedef unsigned short uint16; |
| 95 | typedef signed short int16; |
| 96 | typedef unsigned int uint32; |
| 97 | typedef signed int int32; |
| 98 | typedef unsigned int uint; |
| 99 | |
| 100 | // should produce compiler error if size is wrong |
| 101 | typedef unsigned char validate_uint32[sizeof(uint32)==4]; |
| 102 | |
| 103 | #if defined(STBI_NO_STDIO) && !defined(STBI_NO_WRITE) |
| 104 | #define STBI_NO_WRITE |
| 105 | #endif |
| 106 | |
| 107 | #ifndef STBI_NO_DDS |
| 108 | #include "stbi_DDS_aug.h" |
| 109 | #endif |
| 110 | |
| 111 | // I (JLD) want full messages for SOIL |
| 112 | #define STBI_FAILURE_USERMSG1 1 |
| 113 | |
| 114 | ////////////////////////////////////////////////////////////////////////////// |
| 115 | // |
| 116 | // Generic API that works on all image types |
| 117 | // |
| 118 | |
| 119 | // this is not threadsafe |
| 120 | static const char *failure_reason; |
| 121 | |
| 122 | const char *stbi_failure_reason(void) |
| 123 | { |
| 124 | return failure_reason; |
| 125 | } |
| 126 | |
| 127 | static int e(const char *str) |
| 128 | { |
| 129 | failure_reason = str; |
| 130 | return 0; |
| 131 | } |
| 132 | |
| 133 | #ifdef STBI_NO_FAILURE_STRINGS |
| 134 | #define e(x,y)e(y) 0 |
| 135 | #elif defined(STBI_FAILURE_USERMSG1) |
| 136 | #define e(x,y)e(y) e(y) |
| 137 | #else |
| 138 | #define e(x,y)e(y) e(x) |
| 139 | #endif |
| 140 | |
| 141 | #define epf(x,y)((float *) (e(y)?((void*)0):((void*)0))) ((float *) (e(x,y)e(y)?NULL((void*)0):NULL((void*)0))) |
| 142 | #define epuc(x,y)((unsigned char *) (e(y)?((void*)0):((void*)0))) ((unsigned char *) (e(x,y)e(y)?NULL((void*)0):NULL((void*)0))) |
| 143 | |
| 144 | void stbi_image_free(void *retval_from_stbi_load) |
| 145 | { |
| 146 | free(retval_from_stbi_load); |
| 147 | } |
| 148 | |
| 149 | #define MAX_LOADERS32 32 |
| 150 | stbi_loader *loaders[MAX_LOADERS32]; |
| 151 | static int max_loaders = 0; |
| 152 | |
| 153 | int stbi_register_loader(stbi_loader *loader) |
| 154 | { |
| 155 | int i; |
| 156 | for (i=0; i < MAX_LOADERS32; ++i) { |
| 157 | // already present? |
| 158 | if (loaders[i] == loader) |
| 159 | return 1; |
| 160 | // end of the list? |
| 161 | if (loaders[i] == NULL((void*)0)) { |
| 162 | loaders[i] = loader; |
| 163 | max_loaders = i+1; |
| 164 | return 1; |
| 165 | } |
| 166 | } |
| 167 | // no room for it |
| 168 | return 0; |
| 169 | } |
| 170 | |
| 171 | #ifndef STBI_NO_HDR |
| 172 | static float *ldr_to_hdr(stbi_uc *data, int x, int y, int comp); |
| 173 | static stbi_uc *hdr_to_ldr(float *data, int x, int y, int comp); |
| 174 | #endif |
| 175 | |
| 176 | #ifndef STBI_NO_STDIO |
| 177 | unsigned char *stbi_load(char const *filename, int *x, int *y, int *comp, int req_comp) |
| 178 | { |
| 179 | FILE *f = fopen(filename, "rb"); |
| 180 | unsigned char *result; |
| 181 | if (!f) return epuc("can't fopen", "Unable to open file")((unsigned char *) (e("Unable to open file")?((void*)0):((void *)0))); |
| 182 | result = stbi_load_from_file(f,x,y,comp,req_comp); |
| 183 | fclose(f); |
| 184 | return result; |
| 185 | } |
| 186 | |
| 187 | unsigned char *stbi_load_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) |
| 188 | { |
| 189 | int i; |
| 190 | if (stbi_jpeg_test_file(f)) |
| 191 | return stbi_jpeg_load_from_file(f,x,y,comp,req_comp); |
| 192 | if (stbi_png_test_file(f)) |
| 193 | return stbi_png_load_from_file(f,x,y,comp,req_comp); |
| 194 | if (stbi_bmp_test_file(f)) |
| 195 | return stbi_bmp_load_from_file(f,x,y,comp,req_comp); |
| 196 | if (stbi_psd_test_file(f)) |
| 197 | return stbi_psd_load_from_file(f,x,y,comp,req_comp); |
| 198 | #ifndef STBI_NO_DDS |
| 199 | if (stbi_dds_test_file(f)) |
| 200 | return stbi_dds_load_from_file(f,x,y,comp,req_comp); |
| 201 | #endif |
| 202 | #ifndef STBI_NO_HDR |
| 203 | if (stbi_hdr_test_file(f)) { |
| 204 | float *hdr = stbi_hdr_load_from_file(f, x,y,comp,req_comp); |
| 205 | return hdr_to_ldr(hdr, *x, *y, req_comp ? req_comp : *comp); |
| 206 | } |
| 207 | #endif |
| 208 | for (i=0; i < max_loaders; ++i) |
| 209 | if (loaders[i]->test_file(f)) |
| 210 | return loaders[i]->load_from_file(f,x,y,comp,req_comp); |
| 211 | // test tga last because it's a crappy test! |
| 212 | if (stbi_tga_test_file(f)) |
| 213 | return stbi_tga_load_from_file(f,x,y,comp,req_comp); |
| 214 | return epuc("unknown image type", "Image not of any known type, or corrupt")((unsigned char *) (e("Image not of any known type, or corrupt" )?((void*)0):((void*)0))); |
| 215 | } |
| 216 | #endif |
| 217 | |
| 218 | unsigned char *stbi_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) |
| 219 | { |
| 220 | int i; |
| 221 | if (stbi_jpeg_test_memory(buffer,len)) |
| 222 | return stbi_jpeg_load_from_memory(buffer,len,x,y,comp,req_comp); |
| 223 | if (stbi_png_test_memory(buffer,len)) |
| 224 | return stbi_png_load_from_memory(buffer,len,x,y,comp,req_comp); |
| 225 | if (stbi_bmp_test_memory(buffer,len)) |
| 226 | return stbi_bmp_load_from_memory(buffer,len,x,y,comp,req_comp); |
| 227 | if (stbi_psd_test_memory(buffer,len)) |
| 228 | return stbi_psd_load_from_memory(buffer,len,x,y,comp,req_comp); |
| 229 | #ifndef STBI_NO_DDS |
| 230 | if (stbi_dds_test_memory(buffer,len)) |
| 231 | return stbi_dds_load_from_memory(buffer,len,x,y,comp,req_comp); |
| 232 | #endif |
| 233 | #ifndef STBI_NO_HDR |
| 234 | if (stbi_hdr_test_memory(buffer, len)) { |
| 235 | float *hdr = stbi_hdr_load_from_memory(buffer, len,x,y,comp,req_comp); |
| 236 | return hdr_to_ldr(hdr, *x, *y, req_comp ? req_comp : *comp); |
| 237 | } |
| 238 | #endif |
| 239 | for (i=0; i < max_loaders; ++i) |
| 240 | if (loaders[i]->test_memory(buffer,len)) |
| 241 | return loaders[i]->load_from_memory(buffer,len,x,y,comp,req_comp); |
| 242 | // test tga last because it's a crappy test! |
| 243 | if (stbi_tga_test_memory(buffer,len)) |
| 244 | return stbi_tga_load_from_memory(buffer,len,x,y,comp,req_comp); |
| 245 | return epuc("unknown image type", "Image not of any known type, or corrupt")((unsigned char *) (e("Image not of any known type, or corrupt" )?((void*)0):((void*)0))); |
| 246 | } |
| 247 | |
| 248 | #ifndef STBI_NO_HDR |
| 249 | |
| 250 | #ifndef STBI_NO_STDIO |
| 251 | float *stbi_loadf(char const *filename, int *x, int *y, int *comp, int req_comp) |
| 252 | { |
| 253 | FILE *f = fopen(filename, "rb"); |
| 254 | float *result; |
| 255 | if (!f) return epf("can't fopen", "Unable to open file")((float *) (e("Unable to open file")?((void*)0):((void*)0))); |
| 256 | result = stbi_loadf_from_file(f,x,y,comp,req_comp); |
| 257 | fclose(f); |
| 258 | return result; |
| 259 | } |
| 260 | |
| 261 | float *stbi_loadf_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) |
| 262 | { |
| 263 | unsigned char *data; |
| 264 | #ifndef STBI_NO_HDR |
| 265 | if (stbi_hdr_test_file(f)) |
| 266 | return stbi_hdr_load_from_file(f,x,y,comp,req_comp); |
| 267 | #endif |
| 268 | data = stbi_load_from_file(f, x, y, comp, req_comp); |
| 269 | if (data) |
| 270 | return ldr_to_hdr(data, *x, *y, req_comp ? req_comp : *comp); |
| 271 | return epf("unknown image type", "Image not of any known type, or corrupt")((float *) (e("Image not of any known type, or corrupt")?((void *)0):((void*)0))); |
| 272 | } |
| 273 | #endif |
| 274 | |
| 275 | float *stbi_loadf_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) |
| 276 | { |
| 277 | stbi_uc *data; |
| 278 | #ifndef STBI_NO_HDR |
| 279 | if (stbi_hdr_test_memory(buffer, len)) |
| 280 | return stbi_hdr_load_from_memory(buffer, len,x,y,comp,req_comp); |
| 281 | #endif |
| 282 | data = stbi_load_from_memory(buffer, len, x, y, comp, req_comp); |
| 283 | if (data) |
| 284 | return ldr_to_hdr(data, *x, *y, req_comp ? req_comp : *comp); |
| 285 | return epf("unknown image type", "Image not of any known type, or corrupt")((float *) (e("Image not of any known type, or corrupt")?((void *)0):((void*)0))); |
| 286 | } |
| 287 | #endif |
| 288 | |
| 289 | // these is-hdr-or-not is defined independent of whether STBI_NO_HDR is |
| 290 | // defined, for API simplicity; if STBI_NO_HDR is defined, it always |
| 291 | // reports false! |
| 292 | |
| 293 | int stbi_is_hdr_from_memory(stbi_uc const *buffer, int len) |
| 294 | { |
| 295 | #ifndef STBI_NO_HDR |
| 296 | return stbi_hdr_test_memory(buffer, len); |
| 297 | #else |
| 298 | return 0; |
| 299 | #endif |
| 300 | } |
| 301 | |
| 302 | #ifndef STBI_NO_STDIO |
| 303 | extern int stbi_is_hdr (char const *filename) |
| 304 | { |
| 305 | FILE *f = fopen(filename, "rb"); |
| 306 | int result=0; |
| 307 | if (f) { |
| 308 | result = stbi_is_hdr_from_file(f); |
| 309 | fclose(f); |
| 310 | } |
| 311 | return result; |
| 312 | } |
| 313 | |
| 314 | extern int stbi_is_hdr_from_file(FILE *f) |
| 315 | { |
| 316 | #ifndef STBI_NO_HDR |
| 317 | return stbi_hdr_test_file(f); |
| 318 | #else |
| 319 | return 0; |
| 320 | #endif |
| 321 | } |
| 322 | |
| 323 | #endif |
| 324 | |
| 325 | // @TODO: get image dimensions & components without fully decoding |
| 326 | #ifndef STBI_NO_STDIO |
| 327 | extern int stbi_info (char const *filename, int *x, int *y, int *comp); |
| 328 | extern int stbi_info_from_file (FILE *f, int *x, int *y, int *comp); |
| 329 | #endif |
| 330 | extern int stbi_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp); |
| 331 | |
| 332 | #ifndef STBI_NO_HDR |
| 333 | static float h2l_gamma_i=1.0f/2.2f, h2l_scale_i=1.0f; |
| 334 | static float l2h_gamma=2.2f, l2h_scale=1.0f; |
| 335 | |
| 336 | void stbi_hdr_to_ldr_gamma(float gammafactor) { h2l_gamma_i = 1/gammafactor; } |
| 337 | void stbi_hdr_to_ldr_scale(float scale) { h2l_scale_i = 1/scale; } |
| 338 | |
| 339 | void stbi_ldr_to_hdr_gamma(float gammafactor) { l2h_gamma = gammafactor; } |
| 340 | void stbi_ldr_to_hdr_scale(float scale) { l2h_scale = scale; } |
| 341 | #endif |
| 342 | |
| 343 | |
| 344 | ////////////////////////////////////////////////////////////////////////////// |
| 345 | // |
| 346 | // Common code used by all image loaders |
| 347 | // |
| 348 | |
| 349 | enum |
| 350 | { |
| 351 | SCAN_load=0, |
| 352 | SCAN_type, |
| 353 | SCAN_header, |
| 354 | }; |
| 355 | |
| 356 | typedef struct |
| 357 | { |
| 358 | uint32 img_x, img_y; |
| 359 | int img_n, img_out_n; |
| 360 | |
| 361 | #ifndef STBI_NO_STDIO |
| 362 | FILE *img_file; |
| 363 | #endif |
| 364 | uint8 *img_buffer, *img_buffer_end; |
| 365 | } stbi; |
| 366 | |
| 367 | #ifndef STBI_NO_STDIO |
| 368 | static void start_file(stbi *s, FILE *f) |
| 369 | { |
| 370 | s->img_file = f; |
| 371 | s->img_buffer = NULL((void*)0); |
| 372 | s->img_buffer_end = NULL((void*)0); |
| 373 | } |
| 374 | #endif |
| 375 | |
| 376 | static void start_mem(stbi *s, uint8 const *buffer, int len) |
| 377 | { |
| 378 | #ifndef STBI_NO_STDIO |
| 379 | s->img_file = NULL((void*)0); |
| 380 | #endif |
| 381 | s->img_buffer = (uint8 *) buffer; |
| 382 | s->img_buffer_end = (uint8 *) buffer+len; |
| 383 | } |
| 384 | |
| 385 | __forceinline static int get8(stbi *s) |
| 386 | { |
| 387 | #ifndef STBI_NO_STDIO |
| 388 | if (s->img_file) { |
| 389 | int c = fgetc(s->img_file); |
| 390 | return c == EOF(-1) ? 0 : c; |
| 391 | } |
| 392 | #endif |
| 393 | if (s->img_buffer < s->img_buffer_end) |
| 394 | return *s->img_buffer++; |
| 395 | return 0; |
| 396 | } |
| 397 | |
| 398 | __forceinline static int at_eof(stbi *s) |
| 399 | { |
| 400 | #ifndef STBI_NO_STDIO |
| 401 | if (s->img_file) |
| 402 | return feof(s->img_file); |
| 403 | #endif |
| 404 | return s->img_buffer >= s->img_buffer_end; |
| 405 | } |
| 406 | |
| 407 | __forceinline static uint8 get8u(stbi *s) |
| 408 | { |
| 409 | return (uint8) get8(s); |
| 410 | } |
| 411 | |
| 412 | static void skip(stbi *s, int n) |
| 413 | { |
| 414 | #ifndef STBI_NO_STDIO |
| 415 | if (s->img_file) |
| 416 | fseek(s->img_file, n, SEEK_CUR1); |
| 417 | else |
| 418 | #endif |
| 419 | s->img_buffer += n; |
| 420 | } |
| 421 | |
| 422 | static uint16 get16(stbi *s) |
| 423 | { |
| 424 | int z = get8(s); |
| 425 | return (z << 8) + get8(s); |
| 426 | } |
| 427 | |
| 428 | static uint32 get32(stbi *s) |
| 429 | { |
| 430 | uint32 z = get16(s); |
| 431 | return (z << 16) + get16(s); |
| 432 | } |
| 433 | |
| 434 | static uint16 get16le(stbi *s) |
| 435 | { |
| 436 | int z = get8(s); |
| 437 | return z + (get8(s) << 8); |
| 438 | } |
| 439 | |
| 440 | static uint32 get32le(stbi *s) |
| 441 | { |
| 442 | uint32 z = get16le(s); |
| 443 | return z + (get16le(s) << 16); |
| 444 | } |
| 445 | |
| 446 | static void getn(stbi *s, stbi_uc *buffer, int n) |
| 447 | { |
| 448 | #ifndef STBI_NO_STDIO |
| 449 | if (s->img_file) { |
| 450 | fread(buffer, 1, n, s->img_file); |
| 451 | return; |
| 452 | } |
| 453 | #endif |
| 454 | memcpy(buffer, s->img_buffer, n); |
| 455 | s->img_buffer += n; |
| 456 | } |
| 457 | |
| 458 | ////////////////////////////////////////////////////////////////////////////// |
| 459 | // |
| 460 | // generic converter from built-in img_n to req_comp |
| 461 | // individual types do this automatically as much as possible (e.g. jpeg |
| 462 | // does all cases internally since it needs to colorspace convert anyway, |
| 463 | // and it never has alpha, so very few cases ). png can automatically |
| 464 | // interleave an alpha=255 channel, but falls back to this for other cases |
| 465 | // |
| 466 | // assume data buffer is malloced, so malloc a new one and free that one |
| 467 | // only failure mode is malloc failing |
| 468 | |
| 469 | static uint8 compute_y(int r, int g, int b) |
| 470 | { |
| 471 | return (uint8) (((r*77) + (g*150) + (29*b)) >> 8); |
| 472 | } |
| 473 | |
| 474 | static unsigned char *convert_format(unsigned char *data, int img_n, int req_comp, uint x, uint y) |
| 475 | { |
| 476 | int i,j; |
| 477 | unsigned char *good; |
| 478 | |
| 479 | if (req_comp == img_n) return data; |
| 480 | assert(req_comp >= 1 && req_comp <= 4)((void) (0)); |
| 481 | |
| 482 | good = (unsigned char *) malloc(req_comp * x * y); |
| 483 | if (good == NULL((void*)0)) { |
| 484 | free(data); |
| 485 | return epuc("outofmem", "Out of memory")((unsigned char *) (e("Out of memory")?((void*)0):((void*)0)) ); |
| 486 | } |
| 487 | |
| 488 | for (j=0; j < (int) y; ++j) { |
| 489 | unsigned char *src = data + j * x * img_n ; |
| 490 | unsigned char *dest = good + j * x * req_comp; |
| 491 | |
| 492 | #define COMBO(a,b)((a)*8 +(b)) ((a)*8+(b)) |
| 493 | #define CASE(a,b) case COMBO(a,b)((a)*8 +(b)): for(i=x-1; i >= 0; --i, src += a, dest += b) |
| 494 | // convert source image with img_n components to one with req_comp components; |
| 495 | // avoid switch per pixel, so use switch per scanline and massive macros |
| 496 | switch(COMBO(img_n, req_comp)((img_n)*8 +(req_comp))) { |
| 497 | CASE(1,2) dest[0]=src[0], dest[1]=255; break; |
| 498 | CASE(1,3) dest[0]=dest[1]=dest[2]=src[0]; break; |
| 499 | CASE(1,4) dest[0]=dest[1]=dest[2]=src[0], dest[3]=255; break; |
| 500 | CASE(2,1) dest[0]=src[0]; break; |
| 501 | CASE(2,3) dest[0]=dest[1]=dest[2]=src[0]; break; |
| 502 | CASE(2,4) dest[0]=dest[1]=dest[2]=src[0], dest[3]=src[1]; break; |
| 503 | CASE(3,4) dest[0]=src[0],dest[1]=src[1],dest[2]=src[2],dest[3]=255; break; |
| 504 | CASE(3,1) dest[0]=compute_y(src[0],src[1],src[2]); break; |
| 505 | CASE(3,2) dest[0]=compute_y(src[0],src[1],src[2]), dest[1] = 255; break; |
| 506 | CASE(4,1) dest[0]=compute_y(src[0],src[1],src[2]); break; |
| 507 | CASE(4,2) dest[0]=compute_y(src[0],src[1],src[2]), dest[1] = src[3]; break; |
| 508 | CASE(4,3) dest[0]=src[0],dest[1]=src[1],dest[2]=src[2]; break; |
| 509 | default: assert(0)((void) (0)); |
| 510 | } |
| 511 | #undef CASE |
| 512 | } |
| 513 | |
| 514 | free(data); |
| 515 | return good; |
| 516 | } |
| 517 | |
| 518 | #ifndef STBI_NO_HDR |
| 519 | static float *ldr_to_hdr(stbi_uc *data, int x, int y, int comp) |
| 520 | { |
| 521 | int i,k,n; |
| 522 | float *output = (float *) malloc(x * y * comp * sizeof(float)); |
| 523 | if (output == NULL((void*)0)) { free(data); return epf("outofmem", "Out of memory")((float *) (e("Out of memory")?((void*)0):((void*)0))); } |
| 524 | // compute number of non-alpha components |
| 525 | if (comp & 1) n = comp; else n = comp-1; |
| 526 | for (i=0; i < x*y; ++i) { |
| 527 | for (k=0; k < n; ++k) { |
| 528 | output[i*comp + k] = (float) pow(data[i*comp+k]/255.0f, l2h_gamma) * l2h_scale; |
| 529 | } |
| 530 | if (k < comp) output[i*comp + k] = data[i*comp+k]/255.0f; |
| 531 | } |
| 532 | free(data); |
| 533 | return output; |
| 534 | } |
| 535 | |
| 536 | #define float2int(x)((int) (x)) ((int) (x)) |
| 537 | static stbi_uc *hdr_to_ldr(float *data, int x, int y, int comp) |
| 538 | { |
| 539 | int i,k,n; |
| 540 | stbi_uc *output = (stbi_uc *) malloc(x * y * comp); |
| 541 | if (output == NULL((void*)0)) { free(data); return epuc("outofmem", "Out of memory")((unsigned char *) (e("Out of memory")?((void*)0):((void*)0)) ); } |
| 542 | // compute number of non-alpha components |
| 543 | if (comp & 1) n = comp; else n = comp-1; |
| 544 | for (i=0; i < x*y; ++i) { |
| 545 | for (k=0; k < n; ++k) { |
| 546 | float z = (float) pow(data[i*comp+k]*h2l_scale_i, h2l_gamma_i) * 255 + 0.5f; |
| 547 | if (z < 0) z = 0; |
| 548 | if (z > 255) z = 255; |
| 549 | output[i*comp + k] = float2int(z)((int) (z)); |
| 550 | } |
| 551 | if (k < comp) { |
| 552 | float z = data[i*comp+k] * 255 + 0.5f; |
| 553 | if (z < 0) z = 0; |
| 554 | if (z > 255) z = 255; |
| 555 | output[i*comp + k] = float2int(z)((int) (z)); |
| 556 | } |
| 557 | } |
| 558 | free(data); |
| 559 | return output; |
| 560 | } |
| 561 | #endif |
| 562 | |
| 563 | ////////////////////////////////////////////////////////////////////////////// |
| 564 | // |
| 565 | // "baseline" JPEG/JFIF decoder (not actually fully baseline implementation) |
| 566 | // |
| 567 | // simple implementation |
| 568 | // - channel subsampling of at most 2 in each dimension |
| 569 | // - doesn't support delayed output of y-dimension |
| 570 | // - simple interface (only one output format: 8-bit interleaved RGB) |
| 571 | // - doesn't try to recover corrupt jpegs |
| 572 | // - doesn't allow partial loading, loading multiple at once |
| 573 | // - still fast on x86 (copying globals into locals doesn't help x86) |
| 574 | // - allocates lots of intermediate memory (full size of all components) |
| 575 | // - non-interleaved case requires this anyway |
| 576 | // - allows good upsampling (see next) |
| 577 | // high-quality |
| 578 | // - upsampled channels are bilinearly interpolated, even across blocks |
| 579 | // - quality integer IDCT derived from IJG's 'slow' |
| 580 | // performance |
| 581 | // - fast huffman; reasonable integer IDCT |
| 582 | // - uses a lot of intermediate memory, could cache poorly |
| 583 | // - load http://nothings.org/remote/anemones.jpg 3 times on 2.8Ghz P4 |
| 584 | // stb_jpeg: 1.34 seconds (MSVC6, default release build) |
| 585 | // stb_jpeg: 1.06 seconds (MSVC6, processor = Pentium Pro) |
| 586 | // IJL11.dll: 1.08 seconds (compiled by intel) |
| 587 | // IJG 1998: 0.98 seconds (MSVC6, makefile provided by IJG) |
| 588 | // IJG 1998: 0.95 seconds (MSVC6, makefile + proc=PPro) |
| 589 | |
| 590 | // huffman decoding acceleration |
| 591 | #define FAST_BITS9 9 // larger handles more cases; smaller stomps less cache |
| 592 | |
| 593 | typedef struct |
| 594 | { |
| 595 | uint8 fast[1 << FAST_BITS9]; |
| 596 | // weirdly, repacking this into AoS is a 10% speed loss, instead of a win |
| 597 | uint16 code[256]; |
| 598 | uint8 values[256]; |
| 599 | uint8 size[257]; |
| 600 | unsigned int maxcode[18]; |
| 601 | int delta[17]; // old 'firstsymbol' - old 'firstcode' |
| 602 | } huffman; |
| 603 | |
| 604 | typedef struct |
| 605 | { |
| 606 | #if STBI_SIMD |
| 607 | unsigned short dequant2[4][64]; |
| 608 | #endif |
| 609 | stbi s; |
| 610 | huffman huff_dc[4]; |
| 611 | huffman huff_ac[4]; |
| 612 | uint8 dequant[4][64]; |
| 613 | |
| 614 | // sizes for components, interleaved MCUs |
| 615 | int img_h_max, img_v_max; |
| 616 | int img_mcu_x, img_mcu_y; |
| 617 | int img_mcu_w, img_mcu_h; |
| 618 | |
| 619 | // definition of jpeg image component |
| 620 | struct |
| 621 | { |
| 622 | int id; |
| 623 | int h,v; |
| 624 | int tq; |
| 625 | int hd,ha; |
| 626 | int dc_pred; |
| 627 | |
| 628 | int x,y,w2,h2; |
| 629 | uint8 *data; |
| 630 | void *raw_data; |
| 631 | uint8 *linebuf; |
| 632 | } img_comp[4]; |
| 633 | |
| 634 | uint32 code_buffer; // jpeg entropy-coded buffer |
| 635 | int code_bits; // number of valid bits |
| 636 | unsigned char marker; // marker seen while filling entropy buffer |
| 637 | int nomore; // flag if we saw a marker so must stop |
| 638 | |
| 639 | int scan_n, order[4]; |
| 640 | int restart_interval, todo; |
| 641 | } jpeg; |
| 642 | |
| 643 | static int build_huffman(huffman *h, int *count) |
| 644 | { |
| 645 | int i,j,k=0,code; |
| 646 | // build size list for each symbol (from JPEG spec) |
| 647 | for (i=0; i < 16; ++i) |
| 648 | for (j=0; j < count[i]; ++j) |
| 649 | h->size[k++] = (uint8) (i+1); |
| 650 | h->size[k] = 0; |
| 651 | |
| 652 | // compute actual symbols (from jpeg spec) |
| 653 | code = 0; |
| 654 | k = 0; |
| 655 | for(j=1; j <= 16; ++j) { |
| 656 | // compute delta to add to code to compute symbol id |
| 657 | h->delta[j] = k - code; |
| 658 | if (h->size[k] == j) { |
| 659 | while (h->size[k] == j) |
| 660 | h->code[k++] = (uint16) (code++); |
| 661 | if (code-1 >= (1 << j)) return e("bad code lengths","Corrupt JPEG")e("Corrupt JPEG"); |
| 662 | } |
| 663 | // compute largest code + 1 for this size, preshifted as needed later |
| 664 | h->maxcode[j] = code << (16-j); |
| 665 | code <<= 1; |
| 666 | } |
| 667 | h->maxcode[j] = 0xffffffff; |
| 668 | |
| 669 | // build non-spec acceleration table; 255 is flag for not-accelerated |
| 670 | memset(h->fast, 255, 1 << FAST_BITS9); |
| 671 | for (i=0; i < k; ++i) { |
| 672 | int s = h->size[i]; |
| 673 | if (s <= FAST_BITS9) { |
| 674 | int c = h->code[i] << (FAST_BITS9-s); |
| 675 | int m = 1 << (FAST_BITS9-s); |
| 676 | for (j=0; j < m; ++j) { |
| 677 | h->fast[c+j] = (uint8) i; |
| 678 | } |
| 679 | } |
| 680 | } |
| 681 | return 1; |
| 682 | } |
| 683 | |
| 684 | static void grow_buffer_unsafe(jpeg *j) |
| 685 | { |
| 686 | do { |
| 687 | int b = j->nomore ? 0 : get8(&j->s); |
| 688 | if (b == 0xff) { |
| 689 | int c = get8(&j->s); |
| 690 | if (c != 0) { |
| 691 | j->marker = (unsigned char) c; |
| 692 | j->nomore = 1; |
| 693 | return; |
| 694 | } |
| 695 | } |
| 696 | j->code_buffer = (j->code_buffer << 8) | b; |
| 697 | j->code_bits += 8; |
| 698 | } while (j->code_bits <= 24); |
| 699 | } |
| 700 | |
| 701 | // (1 << n) - 1 |
| 702 | static uint32 bmask[17]={0,1,3,7,15,31,63,127,255,511,1023,2047,4095,8191,16383,32767,65535}; |
| 703 | |
| 704 | // decode a jpeg huffman value from the bitstream |
| 705 | __forceinline static int decode(jpeg *j, huffman *h) |
| 706 | { |
| 707 | unsigned int temp; |
| 708 | int c,k; |
| 709 | |
| 710 | if (j->code_bits < 16) grow_buffer_unsafe(j); |
| 711 | |
| 712 | // look at the top FAST_BITS and determine what symbol ID it is, |
| 713 | // if the code is <= FAST_BITS |
| 714 | c = (j->code_buffer >> (j->code_bits - FAST_BITS9)) & ((1 << FAST_BITS9)-1); |
| 715 | k = h->fast[c]; |
| 716 | if (k < 255) { |
| 717 | if (h->size[k] > j->code_bits) |
| 718 | return -1; |
| 719 | j->code_bits -= h->size[k]; |
| 720 | return h->values[k]; |
| 721 | } |
| 722 | |
| 723 | // naive test is to shift the code_buffer down so k bits are |
| 724 | // valid, then test against maxcode. To speed this up, we've |
| 725 | // preshifted maxcode left so that it has (16-k) 0s at the |
| 726 | // end; in other words, regardless of the number of bits, it |
| 727 | // wants to be compared against something shifted to have 16; |
| 728 | // that way we don't need to shift inside the loop. |
| 729 | if (j->code_bits < 16) |
| 730 | temp = (j->code_buffer << (16 - j->code_bits)) & 0xffff; |
| 731 | else |
| 732 | temp = (j->code_buffer >> (j->code_bits - 16)) & 0xffff; |
| 733 | for (k=FAST_BITS9+1 ; ; ++k) |
| 734 | if (temp < h->maxcode[k]) |
| 735 | break; |
| 736 | if (k == 17) { |
| 737 | // error! code not found |
| 738 | j->code_bits -= 16; |
| 739 | return -1; |
| 740 | } |
| 741 | |
| 742 | if (k > j->code_bits) |
| 743 | return -1; |
| 744 | |
| 745 | // convert the huffman code to the symbol id |
| 746 | c = ((j->code_buffer >> (j->code_bits - k)) & bmask[k]) + h->delta[k]; |
| 747 | assert((((j->code_buffer) >> (j->code_bits - h->size[c])) & bmask[h->size[c]]) == h->code[c])((void) (0)); |
| 748 | |
| 749 | // convert the id to a symbol |
| 750 | j->code_bits -= k; |
| 751 | return h->values[c]; |
| 752 | } |
| 753 | |
| 754 | // combined JPEG 'receive' and JPEG 'extend', since baseline |
| 755 | // always extends everything it receives. |
| 756 | __forceinline static int extend_receive(jpeg *j, int n) |
| 757 | { |
| 758 | unsigned int m = 1 << (n-1); |
| 759 | unsigned int k; |
| 760 | if (j->code_bits < n) grow_buffer_unsafe(j); |
| 761 | k = (j->code_buffer >> (j->code_bits - n)) & bmask[n]; |
| 762 | j->code_bits -= n; |
| 763 | // the following test is probably a random branch that won't |
| 764 | // predict well. I tried to table accelerate it but failed. |
| 765 | // maybe it's compiling as a conditional move? |
| 766 | if (k < m) |
| 767 | return (-1 << n) + k + 1; |
| 768 | else |
| 769 | return k; |
| 770 | } |
| 771 | |
| 772 | // given a value that's at position X in the zigzag stream, |
| 773 | // where does it appear in the 8x8 matrix coded as row-major? |
| 774 | static uint8 dezigzag[64+15] = |
| 775 | { |
| 776 | 0, 1, 8, 16, 9, 2, 3, 10, |
| 777 | 17, 24, 32, 25, 18, 11, 4, 5, |
| 778 | 12, 19, 26, 33, 40, 48, 41, 34, |
| 779 | 27, 20, 13, 6, 7, 14, 21, 28, |
| 780 | 35, 42, 49, 56, 57, 50, 43, 36, |
| 781 | 29, 22, 15, 23, 30, 37, 44, 51, |
| 782 | 58, 59, 52, 45, 38, 31, 39, 46, |
| 783 | 53, 60, 61, 54, 47, 55, 62, 63, |
| 784 | // let corrupt input sample past end |
| 785 | 63, 63, 63, 63, 63, 63, 63, 63, |
| 786 | 63, 63, 63, 63, 63, 63, 63 |
| 787 | }; |
| 788 | |
| 789 | // decode one 64-entry block-- |
| 790 | static int decode_block(jpeg *j, short data[64], huffman *hdc, huffman *hac, int b) |
| 791 | { |
| 792 | int diff,dc,k; |
| 793 | int t = decode(j, hdc); |
| 794 | if (t < 0) return e("bad huffman code","Corrupt JPEG")e("Corrupt JPEG"); |
| 795 | |
| 796 | // 0 all the ac values now so we can do it 32-bits at a time |
| 797 | memset(data,0,64*sizeof(data[0])); |
| 798 | |
| 799 | diff = t ? extend_receive(j, t) : 0; |
| 800 | dc = j->img_comp[b].dc_pred + diff; |
| 801 | j->img_comp[b].dc_pred = dc; |
| 802 | data[0] = (short) dc; |
| 803 | |
| 804 | // decode AC components, see JPEG spec |
| 805 | k = 1; |
| 806 | do { |
| 807 | int r,s; |
| 808 | int rs = decode(j, hac); |
| 809 | if (rs < 0) return e("bad huffman code","Corrupt JPEG")e("Corrupt JPEG"); |
| 810 | s = rs & 15; |
| 811 | r = rs >> 4; |
| 812 | if (s == 0) { |
| 813 | if (rs != 0xf0) break; // end block |
| 814 | k += 16; |
| 815 | } else { |
| 816 | k += r; |
| 817 | // decode into unzigzag'd location |
| 818 | data[dezigzag[k++]] = (short) extend_receive(j,s); |
| 819 | } |
| 820 | } while (k < 64); |
| 821 | return 1; |
| 822 | } |
| 823 | |
| 824 | // take a -128..127 value and clamp it and convert to 0..255 |
| 825 | __forceinline static uint8 clamp(int x) |
| 826 | { |
| 827 | x += 128; |
| 828 | // trick to use a single test to catch both cases |
| 829 | if ((unsigned int) x > 255) { |
| 830 | if (x < 0) return 0; |
| 831 | if (x > 255) return 255; |
| 832 | } |
| 833 | return (uint8) x; |
| 834 | } |
| 835 | |
| 836 | #define f2f(x)(int) (((x) * 4096 + 0.5)) (int) (((x) * 4096 + 0.5)) |
| 837 | #define fsh(x)((x) << 12) ((x) << 12) |
| 838 | |
| 839 | // derived from jidctint -- DCT_ISLOW |
| 840 | #define IDCT_1D(s0,s1,s2,s3,s4,s5,s6,s7)int t0,t1,t2,t3,p1,p2,p3,p4,p5,x0,x1,x2,x3; p2 = s2; p3 = s6; p1 = (p2+p3) * (int) (((0.5411961f) * 4096 + 0.5)); t2 = p1 + p3*(int) (((-1.847759065f) * 4096 + 0.5)); t3 = p1 + p2*(int ) (((0.765366865f) * 4096 + 0.5)); p2 = s0; p3 = s4; t0 = ((p2 +p3) << 12); t1 = ((p2-p3) << 12); x0 = t0+t3; x3 = t0-t3; x1 = t1+t2; x2 = t1-t2; t0 = s7; t1 = s5; t2 = s3; t3 = s1; p3 = t0+t2; p4 = t1+t3; p1 = t0+t3; p2 = t1+t2; p5 = ( p3+p4)*(int) (((1.175875602f) * 4096 + 0.5)); t0 = t0*(int) ( ((0.298631336f) * 4096 + 0.5)); t1 = t1*(int) (((2.053119869f ) * 4096 + 0.5)); t2 = t2*(int) (((3.072711026f) * 4096 + 0.5 )); t3 = t3*(int) (((1.501321110f) * 4096 + 0.5)); p1 = p5 + p1 *(int) (((-0.899976223f) * 4096 + 0.5)); p2 = p5 + p2*(int) ( ((-2.562915447f) * 4096 + 0.5)); p3 = p3*(int) (((-1.961570560f ) * 4096 + 0.5)); p4 = p4*(int) (((-0.390180644f) * 4096 + 0.5 )); t3 += p1+p4; t2 += p2+p3; t1 += p2+p4; t0 += p1+p3; \ |
| 841 | int t0,t1,t2,t3,p1,p2,p3,p4,p5,x0,x1,x2,x3; \ |
| 842 | p2 = s2; \ |
| 843 | p3 = s6; \ |
| 844 | p1 = (p2+p3) * f2f(0.5411961f)(int) (((0.5411961f) * 4096 + 0.5)); \ |
| 845 | t2 = p1 + p3*f2f(-1.847759065f)(int) (((-1.847759065f) * 4096 + 0.5)); \ |
| 846 | t3 = p1 + p2*f2f( 0.765366865f)(int) (((0.765366865f) * 4096 + 0.5)); \ |
| 847 | p2 = s0; \ |
| 848 | p3 = s4; \ |
| 849 | t0 = fsh(p2+p3)((p2+p3) << 12); \ |
| 850 | t1 = fsh(p2-p3)((p2-p3) << 12); \ |
| 851 | x0 = t0+t3; \ |
| 852 | x3 = t0-t3; \ |
| 853 | x1 = t1+t2; \ |
| 854 | x2 = t1-t2; \ |
| 855 | t0 = s7; \ |
| 856 | t1 = s5; \ |
| 857 | t2 = s3; \ |
| 858 | t3 = s1; \ |
| 859 | p3 = t0+t2; \ |
| 860 | p4 = t1+t3; \ |
| 861 | p1 = t0+t3; \ |
| 862 | p2 = t1+t2; \ |
| 863 | p5 = (p3+p4)*f2f( 1.175875602f)(int) (((1.175875602f) * 4096 + 0.5)); \ |
| 864 | t0 = t0*f2f( 0.298631336f)(int) (((0.298631336f) * 4096 + 0.5)); \ |
| 865 | t1 = t1*f2f( 2.053119869f)(int) (((2.053119869f) * 4096 + 0.5)); \ |
| 866 | t2 = t2*f2f( 3.072711026f)(int) (((3.072711026f) * 4096 + 0.5)); \ |
| 867 | t3 = t3*f2f( 1.501321110f)(int) (((1.501321110f) * 4096 + 0.5)); \ |
| 868 | p1 = p5 + p1*f2f(-0.899976223f)(int) (((-0.899976223f) * 4096 + 0.5)); \ |
| 869 | p2 = p5 + p2*f2f(-2.562915447f)(int) (((-2.562915447f) * 4096 + 0.5)); \ |
| 870 | p3 = p3*f2f(-1.961570560f)(int) (((-1.961570560f) * 4096 + 0.5)); \ |
| 871 | p4 = p4*f2f(-0.390180644f)(int) (((-0.390180644f) * 4096 + 0.5)); \ |
| 872 | t3 += p1+p4; \ |
| 873 | t2 += p2+p3; \ |
| 874 | t1 += p2+p4; \ |
| 875 | t0 += p1+p3; |
| 876 | |
| 877 | #if !STBI_SIMD |
| 878 | // .344 seconds on 3*anemones.jpg |
| 879 | static void idct_block(uint8 *out, int out_stride, short data[64], uint8 *dequantize) |
| 880 | { |
| 881 | int i,val[64],*v=val; |
| 882 | uint8 *o,*dq = dequantize; |
| 883 | short *d = data; |
| 884 | |
| 885 | // columns |
| 886 | for (i=0; i < 8; ++i,++d,++dq, ++v) { |
| 887 | // if all zeroes, shortcut -- this avoids dequantizing 0s and IDCTing |
| 888 | if (d[ 8]==0 && d[16]==0 && d[24]==0 && d[32]==0 |
| 889 | && d[40]==0 && d[48]==0 && d[56]==0) { |
| 890 | // no shortcut 0 seconds |
| 891 | // (1|2|3|4|5|6|7)==0 0 seconds |
| 892 | // all separate -0.047 seconds |
| 893 | // 1 && 2|3 && 4|5 && 6|7: -0.047 seconds |
| 894 | int dcterm = d[0] * dq[0] << 2; |
| 895 | v[0] = v[8] = v[16] = v[24] = v[32] = v[40] = v[48] = v[56] = dcterm; |
| 896 | } else { |
| 897 | IDCT_1D(d[ 0]*dq[ 0],d[ 8]*dq[ 8],d[16]*dq[16],d[24]*dq[24],int t0,t1,t2,t3,p1,p2,p3,p4,p5,x0,x1,x2,x3; p2 = d[16]*dq[16] ; p3 = d[48]*dq[48]; p1 = (p2+p3) * (int) (((0.5411961f) * 4096 + 0.5)); t2 = p1 + p3*(int) (((-1.847759065f) * 4096 + 0.5)) ; t3 = p1 + p2*(int) (((0.765366865f) * 4096 + 0.5)); p2 = d[ 0]*dq[ 0]; p3 = d[32]*dq[32]; t0 = ((p2+p3) << 12); t1 = ((p2-p3) << 12); x0 = t0+t3; x3 = t0-t3; x1 = t1+t2; x2 = t1-t2; t0 = d[56]*dq[56]; t1 = d[40]*dq[40]; t2 = d[24] *dq[24]; t3 = d[ 8]*dq[ 8]; p3 = t0+t2; p4 = t1+t3; p1 = t0+t3 ; p2 = t1+t2; p5 = (p3+p4)*(int) (((1.175875602f) * 4096 + 0.5 )); t0 = t0*(int) (((0.298631336f) * 4096 + 0.5)); t1 = t1*(int ) (((2.053119869f) * 4096 + 0.5)); t2 = t2*(int) (((3.072711026f ) * 4096 + 0.5)); t3 = t3*(int) (((1.501321110f) * 4096 + 0.5 )); p1 = p5 + p1*(int) (((-0.899976223f) * 4096 + 0.5)); p2 = p5 + p2*(int) (((-2.562915447f) * 4096 + 0.5)); p3 = p3*(int ) (((-1.961570560f) * 4096 + 0.5)); p4 = p4*(int) (((-0.390180644f ) * 4096 + 0.5)); t3 += p1+p4; t2 += p2+p3; t1 += p2+p4; t0 += p1+p3; |
| 898 | d[32]*dq[32],d[40]*dq[40],d[48]*dq[48],d[56]*dq[56])int t0,t1,t2,t3,p1,p2,p3,p4,p5,x0,x1,x2,x3; p2 = d[16]*dq[16] ; p3 = d[48]*dq[48]; p1 = (p2+p3) * (int) (((0.5411961f) * 4096 + 0.5)); t2 = p1 + p3*(int) (((-1.847759065f) * 4096 + 0.5)) ; t3 = p1 + p2*(int) (((0.765366865f) * 4096 + 0.5)); p2 = d[ 0]*dq[ 0]; p3 = d[32]*dq[32]; t0 = ((p2+p3) << 12); t1 = ((p2-p3) << 12); x0 = t0+t3; x3 = t0-t3; x1 = t1+t2; x2 = t1-t2; t0 = d[56]*dq[56]; t1 = d[40]*dq[40]; t2 = d[24] *dq[24]; t3 = d[ 8]*dq[ 8]; p3 = t0+t2; p4 = t1+t3; p1 = t0+t3 ; p2 = t1+t2; p5 = (p3+p4)*(int) (((1.175875602f) * 4096 + 0.5 )); t0 = t0*(int) (((0.298631336f) * 4096 + 0.5)); t1 = t1*(int ) (((2.053119869f) * 4096 + 0.5)); t2 = t2*(int) (((3.072711026f ) * 4096 + 0.5)); t3 = t3*(int) (((1.501321110f) * 4096 + 0.5 )); p1 = p5 + p1*(int) (((-0.899976223f) * 4096 + 0.5)); p2 = p5 + p2*(int) (((-2.562915447f) * 4096 + 0.5)); p3 = p3*(int ) (((-1.961570560f) * 4096 + 0.5)); p4 = p4*(int) (((-0.390180644f ) * 4096 + 0.5)); t3 += p1+p4; t2 += p2+p3; t1 += p2+p4; t0 += p1+p3; |
| 899 | // constants scaled things up by 1<<12; let's bring them back |
| 900 | // down, but keep 2 extra bits of precision |
| 901 | x0 += 512; x1 += 512; x2 += 512; x3 += 512; |
| 902 | v[ 0] = (x0+t3) >> 10; |
| 903 | v[56] = (x0-t3) >> 10; |
| 904 | v[ 8] = (x1+t2) >> 10; |
| 905 | v[48] = (x1-t2) >> 10; |
| 906 | v[16] = (x2+t1) >> 10; |
| 907 | v[40] = (x2-t1) >> 10; |
| 908 | v[24] = (x3+t0) >> 10; |
| 909 | v[32] = (x3-t0) >> 10; |
| 910 | } |
| 911 | } |
| 912 | |
| 913 | for (i=0, v=val, o=out; i < 8; ++i,v+=8,o+=out_stride) { |
| 914 | // no fast case since the first 1D IDCT spread components out |
| 915 | IDCT_1D(v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7])int t0,t1,t2,t3,p1,p2,p3,p4,p5,x0,x1,x2,x3; p2 = v[2]; p3 = v [6]; p1 = (p2+p3) * (int) (((0.5411961f) * 4096 + 0.5)); t2 = p1 + p3*(int) (((-1.847759065f) * 4096 + 0.5)); t3 = p1 + p2 *(int) (((0.765366865f) * 4096 + 0.5)); p2 = v[0]; p3 = v[4]; t0 = ((p2+p3) << 12); t1 = ((p2-p3) << 12); x0 = t0+t3; x3 = t0-t3; x1 = t1+t2; x2 = t1-t2; t0 = v[7]; t1 = v [5]; t2 = v[3]; t3 = v[1]; p3 = t0+t2; p4 = t1+t3; p1 = t0+t3 ; p2 = t1+t2; p5 = (p3+p4)*(int) (((1.175875602f) * 4096 + 0.5 )); t0 = t0*(int) (((0.298631336f) * 4096 + 0.5)); t1 = t1*(int ) (((2.053119869f) * 4096 + 0.5)); t2 = t2*(int) (((3.072711026f ) * 4096 + 0.5)); t3 = t3*(int) (((1.501321110f) * 4096 + 0.5 )); p1 = p5 + p1*(int) (((-0.899976223f) * 4096 + 0.5)); p2 = p5 + p2*(int) (((-2.562915447f) * 4096 + 0.5)); p3 = p3*(int ) (((-1.961570560f) * 4096 + 0.5)); p4 = p4*(int) (((-0.390180644f ) * 4096 + 0.5)); t3 += p1+p4; t2 += p2+p3; t1 += p2+p4; t0 += p1+p3; |
| 916 | // constants scaled things up by 1<<12, plus we had 1<<2 from first |
| 917 | // loop, plus horizontal and vertical each scale by sqrt(8) so together |
| 918 | // we've got an extra 1<<3, so 1<<17 total we need to remove. |
| 919 | x0 += 65536; x1 += 65536; x2 += 65536; x3 += 65536; |
| 920 | o[0] = clamp((x0+t3) >> 17); |
| 921 | o[7] = clamp((x0-t3) >> 17); |
| 922 | o[1] = clamp((x1+t2) >> 17); |
| 923 | o[6] = clamp((x1-t2) >> 17); |
| 924 | o[2] = clamp((x2+t1) >> 17); |
| 925 | o[5] = clamp((x2-t1) >> 17); |
| 926 | o[3] = clamp((x3+t0) >> 17); |
| 927 | o[4] = clamp((x3-t0) >> 17); |
| 928 | } |
| 929 | } |
| 930 | #else |
| 931 | static void idct_block(uint8 *out, int out_stride, short data[64], unsigned short *dequantize) |
| 932 | { |
| 933 | int i,val[64],*v=val; |
| 934 | uint8 *o; |
| 935 | unsigned short *dq = dequantize; |
| 936 | short *d = data; |
| 937 | |
| 938 | // columns |
| 939 | for (i=0; i < 8; ++i,++d,++dq, ++v) { |
| 940 | // if all zeroes, shortcut -- this avoids dequantizing 0s and IDCTing |
| 941 | if (d[ 8]==0 && d[16]==0 && d[24]==0 && d[32]==0 |
| 942 | && d[40]==0 && d[48]==0 && d[56]==0) { |
| 943 | // no shortcut 0 seconds |
| 944 | // (1|2|3|4|5|6|7)==0 0 seconds |
| 945 | // all separate -0.047 seconds |
| 946 | // 1 && 2|3 && 4|5 && 6|7: -0.047 seconds |
| 947 | int dcterm = d[0] * dq[0] << 2; |
| 948 | v[0] = v[8] = v[16] = v[24] = v[32] = v[40] = v[48] = v[56] = dcterm; |
| 949 | } else { |
| 950 | IDCT_1D(d[ 0]*dq[ 0],d[ 8]*dq[ 8],d[16]*dq[16],d[24]*dq[24],int t0,t1,t2,t3,p1,p2,p3,p4,p5,x0,x1,x2,x3; p2 = d[16]*dq[16] ; p3 = d[48]*dq[48]; p1 = (p2+p3) * (int) (((0.5411961f) * 4096 + 0.5)); t2 = p1 + p3*(int) (((-1.847759065f) * 4096 + 0.5)) ; t3 = p1 + p2*(int) (((0.765366865f) * 4096 + 0.5)); p2 = d[ 0]*dq[ 0]; p3 = d[32]*dq[32]; t0 = ((p2+p3) << 12); t1 = ((p2-p3) << 12); x0 = t0+t3; x3 = t0-t3; x1 = t1+t2; x2 = t1-t2; t0 = d[56]*dq[56]; t1 = d[40]*dq[40]; t2 = d[24] *dq[24]; t3 = d[ 8]*dq[ 8]; p3 = t0+t2; p4 = t1+t3; p1 = t0+t3 ; p2 = t1+t2; p5 = (p3+p4)*(int) (((1.175875602f) * 4096 + 0.5 )); t0 = t0*(int) (((0.298631336f) * 4096 + 0.5)); t1 = t1*(int ) (((2.053119869f) * 4096 + 0.5)); t2 = t2*(int) (((3.072711026f ) * 4096 + 0.5)); t3 = t3*(int) (((1.501321110f) * 4096 + 0.5 )); p1 = p5 + p1*(int) (((-0.899976223f) * 4096 + 0.5)); p2 = p5 + p2*(int) (((-2.562915447f) * 4096 + 0.5)); p3 = p3*(int ) (((-1.961570560f) * 4096 + 0.5)); p4 = p4*(int) (((-0.390180644f ) * 4096 + 0.5)); t3 += p1+p4; t2 += p2+p3; t1 += p2+p4; t0 += p1+p3; |
| 951 | d[32]*dq[32],d[40]*dq[40],d[48]*dq[48],d[56]*dq[56])int t0,t1,t2,t3,p1,p2,p3,p4,p5,x0,x1,x2,x3; p2 = d[16]*dq[16] ; p3 = d[48]*dq[48]; p1 = (p2+p3) * (int) (((0.5411961f) * 4096 + 0.5)); t2 = p1 + p3*(int) (((-1.847759065f) * 4096 + 0.5)) ; t3 = p1 + p2*(int) (((0.765366865f) * 4096 + 0.5)); p2 = d[ 0]*dq[ 0]; p3 = d[32]*dq[32]; t0 = ((p2+p3) << 12); t1 = ((p2-p3) << 12); x0 = t0+t3; x3 = t0-t3; x1 = t1+t2; x2 = t1-t2; t0 = d[56]*dq[56]; t1 = d[40]*dq[40]; t2 = d[24] *dq[24]; t3 = d[ 8]*dq[ 8]; p3 = t0+t2; p4 = t1+t3; p1 = t0+t3 ; p2 = t1+t2; p5 = (p3+p4)*(int) (((1.175875602f) * 4096 + 0.5 )); t0 = t0*(int) (((0.298631336f) * 4096 + 0.5)); t1 = t1*(int ) (((2.053119869f) * 4096 + 0.5)); t2 = t2*(int) (((3.072711026f ) * 4096 + 0.5)); t3 = t3*(int) (((1.501321110f) * 4096 + 0.5 )); p1 = p5 + p1*(int) (((-0.899976223f) * 4096 + 0.5)); p2 = p5 + p2*(int) (((-2.562915447f) * 4096 + 0.5)); p3 = p3*(int ) (((-1.961570560f) * 4096 + 0.5)); p4 = p4*(int) (((-0.390180644f ) * 4096 + 0.5)); t3 += p1+p4; t2 += p2+p3; t1 += p2+p4; t0 += p1+p3; |
| 952 | // constants scaled things up by 1<<12; let's bring them back |
| 953 | // down, but keep 2 extra bits of precision |
| 954 | x0 += 512; x1 += 512; x2 += 512; x3 += 512; |
| 955 | v[ 0] = (x0+t3) >> 10; |
| 956 | v[56] = (x0-t3) >> 10; |
| 957 | v[ 8] = (x1+t2) >> 10; |
| 958 | v[48] = (x1-t2) >> 10; |
| 959 | v[16] = (x2+t1) >> 10; |
| 960 | v[40] = (x2-t1) >> 10; |
| 961 | v[24] = (x3+t0) >> 10; |
| 962 | v[32] = (x3-t0) >> 10; |
| 963 | } |
| 964 | } |
| 965 | |
| 966 | for (i=0, v=val, o=out; i < 8; ++i,v+=8,o+=out_stride) { |
| 967 | // no fast case since the first 1D IDCT spread components out |
| 968 | IDCT_1D(v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7])int t0,t1,t2,t3,p1,p2,p3,p4,p5,x0,x1,x2,x3; p2 = v[2]; p3 = v [6]; p1 = (p2+p3) * (int) (((0.5411961f) * 4096 + 0.5)); t2 = p1 + p3*(int) (((-1.847759065f) * 4096 + 0.5)); t3 = p1 + p2 *(int) (((0.765366865f) * 4096 + 0.5)); p2 = v[0]; p3 = v[4]; t0 = ((p2+p3) << 12); t1 = ((p2-p3) << 12); x0 = t0+t3; x3 = t0-t3; x1 = t1+t2; x2 = t1-t2; t0 = v[7]; t1 = v [5]; t2 = v[3]; t3 = v[1]; p3 = t0+t2; p4 = t1+t3; p1 = t0+t3 ; p2 = t1+t2; p5 = (p3+p4)*(int) (((1.175875602f) * 4096 + 0.5 )); t0 = t0*(int) (((0.298631336f) * 4096 + 0.5)); t1 = t1*(int ) (((2.053119869f) * 4096 + 0.5)); t2 = t2*(int) (((3.072711026f ) * 4096 + 0.5)); t3 = t3*(int) (((1.501321110f) * 4096 + 0.5 )); p1 = p5 + p1*(int) (((-0.899976223f) * 4096 + 0.5)); p2 = p5 + p2*(int) (((-2.562915447f) * 4096 + 0.5)); p3 = p3*(int ) (((-1.961570560f) * 4096 + 0.5)); p4 = p4*(int) (((-0.390180644f ) * 4096 + 0.5)); t3 += p1+p4; t2 += p2+p3; t1 += p2+p4; t0 += p1+p3; |
| 969 | // constants scaled things up by 1<<12, plus we had 1<<2 from first |
| 970 | // loop, plus horizontal and vertical each scale by sqrt(8) so together |
| 971 | // we've got an extra 1<<3, so 1<<17 total we need to remove. |
| 972 | x0 += 65536; x1 += 65536; x2 += 65536; x3 += 65536; |
| 973 | o[0] = clamp((x0+t3) >> 17); |
| 974 | o[7] = clamp((x0-t3) >> 17); |
| 975 | o[1] = clamp((x1+t2) >> 17); |
| 976 | o[6] = clamp((x1-t2) >> 17); |
| 977 | o[2] = clamp((x2+t1) >> 17); |
| 978 | o[5] = clamp((x2-t1) >> 17); |
| 979 | o[3] = clamp((x3+t0) >> 17); |
| 980 | o[4] = clamp((x3-t0) >> 17); |
| 981 | } |
| 982 | } |
| 983 | static stbi_idct_8x8 stbi_idct_installed = idct_block; |
| 984 | |
| 985 | extern void stbi_install_idct(stbi_idct_8x8 func) |
| 986 | { |
| 987 | stbi_idct_installed = func; |
| 988 | } |
| 989 | #endif |
| 990 | |
| 991 | #define MARKER_none0xff 0xff |
| 992 | // if there's a pending marker from the entropy stream, return that |
| 993 | // otherwise, fetch from the stream and get a marker. if there's no |
| 994 | // marker, return 0xff, which is never a valid marker value |
| 995 | static uint8 get_marker(jpeg *j) |
| 996 | { |
| 997 | uint8 x; |
| 998 | if (j->marker != MARKER_none0xff) { x = j->marker; j->marker = MARKER_none0xff; return x; } |
| 999 | x = get8u(&j->s); |
| 1000 | if (x != 0xff) return MARKER_none0xff; |
| 1001 | while (x == 0xff) |
| 1002 | x = get8u(&j->s); |
| 1003 | return x; |
| 1004 | } |
| 1005 | |
| 1006 | // in each scan, we'll have scan_n components, and the order |
| 1007 | // of the components is specified by order[] |
| 1008 | #define RESTART(x)((x) >= 0xd0 && (x) <= 0xd7) ((x) >= 0xd0 && (x) <= 0xd7) |
| 1009 | |
| 1010 | // after a restart interval, reset the entropy decoder and |
| 1011 | // the dc prediction |
| 1012 | static void reset(jpeg *j) |
| 1013 | { |
| 1014 | j->code_bits = 0; |
| 1015 | j->code_buffer = 0; |
| 1016 | j->nomore = 0; |
| 1017 | j->img_comp[0].dc_pred = j->img_comp[1].dc_pred = j->img_comp[2].dc_pred = 0; |
| 1018 | j->marker = MARKER_none0xff; |
| 1019 | j->todo = j->restart_interval ? j->restart_interval : 0x7fffffff; |
| 1020 | // no more than 1<<31 MCUs if no restart_interal? that's plenty safe, |
| 1021 | // since we don't even allow 1<<30 pixels |
| 1022 | } |
| 1023 | |
| 1024 | static int parse_entropy_coded_data(jpeg *z) |
| 1025 | { |
| 1026 | reset(z); |
| 1027 | if (z->scan_n == 1) { |
| 1028 | int i,j; |
| 1029 | #if STBI_SIMD |
| 1030 | __declspec(align(16)) |
| 1031 | #endif |
| 1032 | short data[64]; |
| 1033 | int n = z->order[0]; |
| 1034 | // non-interleaved data, we just need to process one block at a time, |
| 1035 | // in trivial scanline order |
| 1036 | // number of blocks to do just depends on how many actual "pixels" this |
| 1037 | // component has, independent of interleaved MCU blocking and such |
| 1038 | int w = (z->img_comp[n].x+7) >> 3; |
| 1039 | int h = (z->img_comp[n].y+7) >> 3; |
| 1040 | for (j=0; j < h; ++j) { |
| 1041 | for (i=0; i < w; ++i) { |
| 1042 | if (!decode_block(z, data, z->huff_dc+z->img_comp[n].hd, z->huff_ac+z->img_comp[n].ha, n)) return 0; |
| 1043 | #if STBI_SIMD |
| 1044 | stbi_idct_installed(z->img_comp[n].data+z->img_comp[n].w2*j*8+i*8, z->img_comp[n].w2, data, z->dequant2[z->img_comp[n].tq]); |
| 1045 | #else |
| 1046 | idct_block(z->img_comp[n].data+z->img_comp[n].w2*j*8+i*8, z->img_comp[n].w2, data, z->dequant[z->img_comp[n].tq]); |
| 1047 | #endif |
| 1048 | // every data block is an MCU, so countdown the restart interval |
| 1049 | if (--z->todo <= 0) { |
| 1050 | if (z->code_bits < 24) grow_buffer_unsafe(z); |
| 1051 | // if it's NOT a restart, then just bail, so we get corrupt data |
| 1052 | // rather than no data |
| 1053 | if (!RESTART(z->marker)((z->marker) >= 0xd0 && (z->marker) <= 0xd7 )) return 1; |
| 1054 | reset(z); |
| 1055 | } |
| 1056 | } |
| 1057 | } |
| 1058 | } else { // interleaved! |
| 1059 | int i,j,k,x,y; |
| 1060 | short data[64]; |
| 1061 | for (j=0; j < z->img_mcu_y; ++j) { |
| 1062 | for (i=0; i < z->img_mcu_x; ++i) { |
| 1063 | // scan an interleaved mcu... process scan_n components in order |
| 1064 | for (k=0; k < z->scan_n; ++k) { |
| 1065 | int n = z->order[k]; |
| 1066 | // scan out an mcu's worth of this component; that's just determined |
| 1067 | // by the basic H and V specified for the component |
| 1068 | for (y=0; y < z->img_comp[n].v; ++y) { |
| 1069 | for (x=0; x < z->img_comp[n].h; ++x) { |
| 1070 | int x2 = (i*z->img_comp[n].h + x)*8; |
| 1071 | int y2 = (j*z->img_comp[n].v + y)*8; |
| 1072 | if (!decode_block(z, data, z->huff_dc+z->img_comp[n].hd, z->huff_ac+z->img_comp[n].ha, n)) return 0; |
| 1073 | #if STBI_SIMD |
| 1074 | stbi_idct_installed(z->img_comp[n].data+z->img_comp[n].w2*y2+x2, z->img_comp[n].w2, data, z->dequant2[z->img_comp[n].tq]); |
| 1075 | #else |
| 1076 | idct_block(z->img_comp[n].data+z->img_comp[n].w2*y2+x2, z->img_comp[n].w2, data, z->dequant[z->img_comp[n].tq]); |
| 1077 | #endif |
| 1078 | } |
| 1079 | } |
| 1080 | } |
| 1081 | // after all interleaved components, that's an interleaved MCU, |
| 1082 | // so now count down the restart interval |
| 1083 | if (--z->todo <= 0) { |
| 1084 | if (z->code_bits < 24) grow_buffer_unsafe(z); |
| 1085 | // if it's NOT a restart, then just bail, so we get corrupt data |
| 1086 | // rather than no data |
| 1087 | if (!RESTART(z->marker)((z->marker) >= 0xd0 && (z->marker) <= 0xd7 )) return 1; |
| 1088 | reset(z); |
| 1089 | } |
| 1090 | } |
| 1091 | } |
| 1092 | } |
| 1093 | return 1; |
| 1094 | } |
| 1095 | |
| 1096 | static int process_marker(jpeg *z, int m) |
| 1097 | { |
| 1098 | int L; |
| 1099 | switch (m) { |
| 1100 | case MARKER_none0xff: // no marker found |
| 1101 | return e("expected marker","Corrupt JPEG")e("Corrupt JPEG"); |
| 1102 | |
| 1103 | case 0xC2: // SOF - progressive |
| 1104 | return e("progressive jpeg","JPEG format not supported (progressive)")e("JPEG format not supported (progressive)"); |
| 1105 | |
| 1106 | case 0xDD: // DRI - specify restart interval |
| 1107 | if (get16(&z->s) != 4) return e("bad DRI len","Corrupt JPEG")e("Corrupt JPEG"); |
| 1108 | z->restart_interval = get16(&z->s); |
| 1109 | return 1; |
| 1110 | |
| 1111 | case 0xDB: // DQT - define quantization table |
| 1112 | L = get16(&z->s)-2; |
| 1113 | while (L > 0) { |
| 1114 | int q = get8(&z->s); |
| 1115 | int p = q >> 4; |
| 1116 | int t = q & 15,i; |
| 1117 | if (p != 0) return e("bad DQT type","Corrupt JPEG")e("Corrupt JPEG"); |
| 1118 | if (t > 3) return e("bad DQT table","Corrupt JPEG")e("Corrupt JPEG"); |
| 1119 | for (i=0; i < 64; ++i) |
| 1120 | z->dequant[t][dezigzag[i]] = get8u(&z->s); |
| 1121 | #if STBI_SIMD |
| 1122 | for (i=0; i < 64; ++i) |
| 1123 | z->dequant2[t][i] = z->dequant[t][i]; |
| 1124 | #endif |
| 1125 | L -= 65; |
| 1126 | } |
| 1127 | return L==0; |
| 1128 | |
| 1129 | case 0xC4: // DHT - define huffman table |
| 1130 | L = get16(&z->s)-2; |
| 1131 | while (L > 0) { |
| 1132 | uint8 *v; |
| 1133 | int sizes[16],i,m2=0; |
| 1134 | int q = get8(&z->s); |
| 1135 | int tc = q >> 4; |
| 1136 | int th = q & 15; |
| 1137 | if (tc > 1 || th > 3) return e("bad DHT header","Corrupt JPEG")e("Corrupt JPEG"); |
| 1138 | for (i=0; i < 16; ++i) { |
| 1139 | sizes[i] = get8(&z->s); |
| 1140 | m2 += sizes[i]; |
| 1141 | } |
| 1142 | L -= 17; |
| 1143 | if (tc == 0) { |
| 1144 | if (!build_huffman(z->huff_dc+th, sizes)) return 0; |
| 1145 | v = z->huff_dc[th].values; |
| 1146 | } else { |
| 1147 | if (!build_huffman(z->huff_ac+th, sizes)) return 0; |
| 1148 | v = z->huff_ac[th].values; |
| 1149 | } |
| 1150 | for (i=0; i < m2; ++i) |
| 1151 | v[i] = get8u(&z->s); |
| 1152 | L -= m2; |
| 1153 | } |
| 1154 | return L==0; |
| 1155 | } |
| 1156 | // check for comment block or APP blocks |
| 1157 | if ((m >= 0xE0 && m <= 0xEF) || m == 0xFE) { |
| 1158 | skip(&z->s, get16(&z->s)-2); |
| 1159 | return 1; |
| 1160 | } |
| 1161 | return 0; |
| 1162 | } |
| 1163 | |
| 1164 | // after we see SOS |
| 1165 | static int process_scan_header(jpeg *z) |
| 1166 | { |
| 1167 | int i; |
| 1168 | int Ls = get16(&z->s); |
| 1169 | z->scan_n = get8(&z->s); |
| 1170 | if (z->scan_n < 1 || z->scan_n > 4 || z->scan_n > (int) z->s.img_n) return e("bad SOS component count","Corrupt JPEG")e("Corrupt JPEG"); |
| 1171 | if (Ls != 6+2*z->scan_n) return e("bad SOS len","Corrupt JPEG")e("Corrupt JPEG"); |
| 1172 | for (i=0; i < z->scan_n; ++i) { |
| 1173 | int ID = get8(&z->s), which; |
| 1174 | int q = get8(&z->s); |
| 1175 | for (which = 0; which < z->s.img_n; ++which) |
| 1176 | if (z->img_comp[which].id == ID) |
| 1177 | break; |
| 1178 | if (which == z->s.img_n) return 0; |
| 1179 | z->img_comp[which].hd = q >> 4; if (z->img_comp[which].hd > 3) return e("bad DC huff","Corrupt JPEG")e("Corrupt JPEG"); |
| 1180 | z->img_comp[which].ha = q & 15; if (z->img_comp[which].ha > 3) return e("bad AC huff","Corrupt JPEG")e("Corrupt JPEG"); |
| 1181 | z->order[i] = which; |
| 1182 | } |
| 1183 | if (get8(&z->s) != 0) return e("bad SOS","Corrupt JPEG")e("Corrupt JPEG"); |
| 1184 | get8(&z->s); // should be 63, but might be 0 |
| 1185 | if (get8(&z->s) != 0) return e("bad SOS","Corrupt JPEG")e("Corrupt JPEG"); |
| 1186 | |
| 1187 | return 1; |
| 1188 | } |
| 1189 | |
| 1190 | static int process_frame_header(jpeg *z, int scan) |
| 1191 | { |
| 1192 | stbi *s = &z->s; |
| 1193 | int Lf,p,i,q, h_max=1,v_max=1,c; |
| 1194 | Lf = get16(s); if (Lf < 11) return e("bad SOF len","Corrupt JPEG")e("Corrupt JPEG"); // JPEG |
| 1195 | p = get8(s); if (p != 8) return e("only 8-bit","JPEG format not supported: 8-bit only")e("JPEG format not supported: 8-bit only"); // JPEG baseline |
| 1196 | s->img_y = get16(s); if (s->img_y == 0) return e("no header height", "JPEG format not supported: delayed height")e("JPEG format not supported: delayed height"); // Legal, but we don't handle it--but neither does IJG |
| 1197 | s->img_x = get16(s); if (s->img_x == 0) return e("0 width","Corrupt JPEG")e("Corrupt JPEG"); // JPEG requires |
| 1198 | c = get8(s); |
| 1199 | if (c != 3 && c != 1) return e("bad component count","Corrupt JPEG")e("Corrupt JPEG"); // JFIF requires |
| 1200 | s->img_n = c; |
| 1201 | for (i=0; i < c; ++i) { |
| 1202 | z->img_comp[i].data = NULL((void*)0); |
| 1203 | z->img_comp[i].linebuf = NULL((void*)0); |
| 1204 | } |
| 1205 | |
| 1206 | if (Lf != 8+3*s->img_n) return e("bad SOF len","Corrupt JPEG")e("Corrupt JPEG"); |
| 1207 | |
| 1208 | for (i=0; i < s->img_n; ++i) { |
| 1209 | z->img_comp[i].id = get8(s); |
| 1210 | if (z->img_comp[i].id != i+1) // JFIF requires |
| 1211 | if (z->img_comp[i].id != i) // some version of jpegtran outputs non-JFIF-compliant files! |
| 1212 | return e("bad component ID","Corrupt JPEG")e("Corrupt JPEG"); |
| 1213 | q = get8(s); |
| 1214 | z->img_comp[i].h = (q >> 4); if (!z->img_comp[i].h || z->img_comp[i].h > 4) return e("bad H","Corrupt JPEG")e("Corrupt JPEG"); |
| 1215 | z->img_comp[i].v = q & 15; if (!z->img_comp[i].v || z->img_comp[i].v > 4) return e("bad V","Corrupt JPEG")e("Corrupt JPEG"); |
| 1216 | z->img_comp[i].tq = get8(s); if (z->img_comp[i].tq > 3) return e("bad TQ","Corrupt JPEG")e("Corrupt JPEG"); |
| 1217 | } |
| 1218 | |
| 1219 | if (scan != SCAN_load) return 1; |
| 1220 | |
| 1221 | if ((1 << 30) / s->img_x / s->img_n < s->img_y) return e("too large", "Image too large to decode")e("Image too large to decode"); |
| 1222 | |
| 1223 | for (i=0; i < s->img_n; ++i) { |
| 1224 | if (z->img_comp[i].h > h_max) h_max = z->img_comp[i].h; |
| 1225 | if (z->img_comp[i].v > v_max) v_max = z->img_comp[i].v; |
| 1226 | } |
| 1227 | |
| 1228 | // compute interleaved mcu info |
| 1229 | z->img_h_max = h_max; |
| 1230 | z->img_v_max = v_max; |
| 1231 | z->img_mcu_w = h_max * 8; |
| 1232 | z->img_mcu_h = v_max * 8; |
| 1233 | z->img_mcu_x = (s->img_x + z->img_mcu_w-1) / z->img_mcu_w; |
| 1234 | z->img_mcu_y = (s->img_y + z->img_mcu_h-1) / z->img_mcu_h; |
| 1235 | |
| 1236 | for (i=0; i < s->img_n; ++i) { |
| 1237 | // number of effective pixels (e.g. for non-interleaved MCU) |
| 1238 | z->img_comp[i].x = (s->img_x * z->img_comp[i].h + h_max-1) / h_max; |
| 1239 | z->img_comp[i].y = (s->img_y * z->img_comp[i].v + v_max-1) / v_max; |
| 1240 | // to simplify generation, we'll allocate enough memory to decode |
| 1241 | // the bogus oversized data from using interleaved MCUs and their |
| 1242 | // big blocks (e.g. a 16x16 iMCU on an image of width 33); we won't |
| 1243 | // discard the extra data until colorspace conversion |
| 1244 | z->img_comp[i].w2 = z->img_mcu_x * z->img_comp[i].h * 8; |
| 1245 | z->img_comp[i].h2 = z->img_mcu_y * z->img_comp[i].v * 8; |
| 1246 | z->img_comp[i].raw_data = malloc(z->img_comp[i].w2 * z->img_comp[i].h2+15); |
| 1247 | if (z->img_comp[i].raw_data == NULL((void*)0)) { |
| 1248 | for(--i; i >= 0; --i) { |
| 1249 | free(z->img_comp[i].raw_data); |
| 1250 | z->img_comp[i].data = NULL((void*)0); |
| 1251 | } |
| 1252 | return e("outofmem", "Out of memory")e("Out of memory"); |
| 1253 | } |
| 1254 | // align blocks for installable-idct using mmx/sse |
| 1255 | z->img_comp[i].data = (uint8*) (((size_t) z->img_comp[i].raw_data + 15) & ~15); |
| 1256 | z->img_comp[i].linebuf = NULL((void*)0); |
| 1257 | } |
| 1258 | |
| 1259 | return 1; |
| 1260 | } |
| 1261 | |
| 1262 | // use comparisons since in some cases we handle more than one case (e.g. SOF) |
| 1263 | #define DNL(x)((x) == 0xdc) ((x) == 0xdc) |
| 1264 | #define SOI(x)((x) == 0xd8) ((x) == 0xd8) |
| 1265 | #define EOI(x)((x) == 0xd9) ((x) == 0xd9) |
| 1266 | #define SOF(x)((x) == 0xc0 || (x) == 0xc1) ((x) == 0xc0 || (x) == 0xc1) |
| 1267 | #define SOS(x)((x) == 0xda) ((x) == 0xda) |
| 1268 | |
| 1269 | static int decode_jpeg_header(jpeg *z, int scan) |
| 1270 | { |
| 1271 | int m; |
| 1272 | z->marker = MARKER_none0xff; // initialize cached marker to empty |
| 1273 | m = get_marker(z); |
| 1274 | if (!SOI(m)((m) == 0xd8)) return e("no SOI","Corrupt JPEG")e("Corrupt JPEG"); |
| 1275 | if (scan == SCAN_type) return 1; |
| 1276 | m = get_marker(z); |
| 1277 | while (!SOF(m)((m) == 0xc0 || (m) == 0xc1)) { |
| 1278 | if (!process_marker(z,m)) return 0; |
| 1279 | m = get_marker(z); |
| 1280 | while (m == MARKER_none0xff) { |
| 1281 | // some files have extra padding after their blocks, so ok, we'll scan |
| 1282 | if (at_eof(&z->s)) return e("no SOF", "Corrupt JPEG")e("Corrupt JPEG"); |
| 1283 | m = get_marker(z); |
| 1284 | } |
| 1285 | } |
| 1286 | if (!process_frame_header(z, scan)) return 0; |
| 1287 | return 1; |
| 1288 | } |
| 1289 | |
| 1290 | static int decode_jpeg_image(jpeg *j) |
| 1291 | { |
| 1292 | int m; |
| 1293 | j->restart_interval = 0; |
| 1294 | if (!decode_jpeg_header(j, SCAN_load)) return 0; |
| 1295 | m = get_marker(j); |
| 1296 | while (!EOI(m)((m) == 0xd9)) { |
| 1297 | if (SOS(m)((m) == 0xda)) { |
| 1298 | if (!process_scan_header(j)) return 0; |
| 1299 | if (!parse_entropy_coded_data(j)) return 0; |
| 1300 | } else { |
| 1301 | if (!process_marker(j, m)) return 0; |
| 1302 | } |
| 1303 | m = get_marker(j); |
| 1304 | } |
| 1305 | return 1; |
| 1306 | } |
| 1307 | |
| 1308 | // static jfif-centered resampling (across block boundaries) |
| 1309 | |
| 1310 | typedef uint8 *(*resample_row_func)(uint8 *out, uint8 *in0, uint8 *in1, |
| 1311 | int w, int hs); |
| 1312 | |
| 1313 | #define div4(x)((uint8) ((x) >> 2)) ((uint8) ((x) >> 2)) |
| 1314 | |
| 1315 | static uint8 *resample_row_1(uint8 *out, uint8 *in_near, uint8 *in_far, int w, int hs) |
| 1316 | { |
| 1317 | return in_near; |
| 1318 | } |
| 1319 | |
| 1320 | static uint8* resample_row_v_2(uint8 *out, uint8 *in_near, uint8 *in_far, int w, int hs) |
| 1321 | { |
| 1322 | // need to generate two samples vertically for every one in input |
| 1323 | int i; |
| 1324 | for (i=0; i < w; ++i) |
| 1325 | out[i] = div4(3*in_near[i] + in_far[i] + 2)((uint8) ((3*in_near[i] + in_far[i] + 2) >> 2)); |
| 1326 | return out; |
| 1327 | } |
| 1328 | |
| 1329 | static uint8* resample_row_h_2(uint8 *out, uint8 *in_near, uint8 *in_far, int w, int hs) |
| 1330 | { |
| 1331 | // need to generate two samples horizontally for every one in input |
| 1332 | int i; |
| 1333 | uint8 *input = in_near; |
| 1334 | if (w == 1) { |
| 1335 | // if only one sample, can't do any interpolation |
| 1336 | out[0] = out[1] = input[0]; |
| 1337 | return out; |
| 1338 | } |
| 1339 | |
| 1340 | out[0] = input[0]; |
| 1341 | out[1] = div4(input[0]*3 + input[1] + 2)((uint8) ((input[0]*3 + input[1] + 2) >> 2)); |
| 1342 | for (i=1; i < w-1; ++i) { |
| 1343 | int n = 3*input[i]+2; |
| 1344 | out[i*2+0] = div4(n+input[i-1])((uint8) ((n+input[i-1]) >> 2)); |
| 1345 | out[i*2+1] = div4(n+input[i+1])((uint8) ((n+input[i+1]) >> 2)); |
| 1346 | } |
| 1347 | out[i*2+0] = div4(input[w-2]*3 + input[w-1] + 2)((uint8) ((input[w-2]*3 + input[w-1] + 2) >> 2)); |
| 1348 | out[i*2+1] = input[w-1]; |
| 1349 | return out; |
| 1350 | } |
| 1351 | |
| 1352 | #define div16(x)((uint8) ((x) >> 4)) ((uint8) ((x) >> 4)) |
| 1353 | |
| 1354 | static uint8 *resample_row_hv_2(uint8 *out, uint8 *in_near, uint8 *in_far, int w, int hs) |
| 1355 | { |
| 1356 | // need to generate 2x2 samples for every one in input |
| 1357 | int i,t0,t1; |
| 1358 | if (w == 1) { |
| 1359 | out[0] = out[1] = div4(3*in_near[0] + in_far[0] + 2)((uint8) ((3*in_near[0] + in_far[0] + 2) >> 2)); |
| 1360 | return out; |
| 1361 | } |
| 1362 | |
| 1363 | t1 = 3*in_near[0] + in_far[0]; |
| 1364 | out[0] = div4(t1+2)((uint8) ((t1+2) >> 2)); |
| 1365 | for (i=1; i < w; ++i) { |
| 1366 | t0 = t1; |
| 1367 | t1 = 3*in_near[i]+in_far[i]; |
| 1368 | out[i*2-1] = div16(3*t0 + t1 + 8)((uint8) ((3*t0 + t1 + 8) >> 4)); |
| 1369 | out[i*2 ] = div16(3*t1 + t0 + 8)((uint8) ((3*t1 + t0 + 8) >> 4)); |
| 1370 | } |
| 1371 | out[w*2-1] = div4(t1+2)((uint8) ((t1+2) >> 2)); |
| 1372 | return out; |
| 1373 | } |
| 1374 | |
| 1375 | static uint8 *resample_row_generic(uint8 *out, uint8 *in_near, uint8 *in_far, int w, int hs) |
| 1376 | { |
| 1377 | // resample with nearest-neighbor |
| 1378 | int i,j; |
| 1379 | for (i=0; i < w; ++i) |
| 1380 | for (j=0; j < hs; ++j) |
| 1381 | out[i*hs+j] = in_near[i]; |
| 1382 | return out; |
| 1383 | } |
| 1384 | |
| 1385 | #define float2fixed(x)((int) ((x) * 65536 + 0.5)) ((int) ((x) * 65536 + 0.5)) |
| 1386 | |
| 1387 | // 0.38 seconds on 3*anemones.jpg (0.25 with processor = Pro) |
| 1388 | // VC6 without processor=Pro is generating multiple LEAs per multiply! |
| 1389 | static void YCbCr_to_RGB_row(uint8 *out, const uint8 *y, const uint8 *pcb, const uint8 *pcr, int count, int step) |
| 1390 | { |
| 1391 | int i; |
| 1392 | for (i=0; i < count; ++i) { |
| 1393 | int y_fixed = (y[i] << 16) + 32768; // rounding |
| 1394 | int r,g,b; |
| 1395 | int cr = pcr[i] - 128; |
| 1396 | int cb = pcb[i] - 128; |
| 1397 | r = y_fixed + cr*float2fixed(1.40200f)((int) ((1.40200f) * 65536 + 0.5)); |
| 1398 | g = y_fixed - cr*float2fixed(0.71414f)((int) ((0.71414f) * 65536 + 0.5)) - cb*float2fixed(0.34414f)((int) ((0.34414f) * 65536 + 0.5)); |
| 1399 | b = y_fixed + cb*float2fixed(1.77200f)((int) ((1.77200f) * 65536 + 0.5)); |
| 1400 | r >>= 16; |
| 1401 | g >>= 16; |
| 1402 | b >>= 16; |
| 1403 | if ((unsigned) r > 255) { if (r < 0) r = 0; else r = 255; } |
| 1404 | if ((unsigned) g > 255) { if (g < 0) g = 0; else g = 255; } |
| 1405 | if ((unsigned) b > 255) { if (b < 0) b = 0; else b = 255; } |
| 1406 | out[0] = (uint8)r; |
| 1407 | out[1] = (uint8)g; |
| 1408 | out[2] = (uint8)b; |
| 1409 | out[3] = 255; |
| 1410 | out += step; |
| 1411 | } |
| 1412 | } |
| 1413 | |
| 1414 | #if STBI_SIMD |
| 1415 | static stbi_YCbCr_to_RGB_run stbi_YCbCr_installed = YCbCr_to_RGB_row; |
| 1416 | |
| 1417 | void stbi_install_YCbCr_to_RGB(stbi_YCbCr_to_RGB_run func) |
| 1418 | { |
| 1419 | stbi_YCbCr_installed = func; |
| 1420 | } |
| 1421 | #endif |
| 1422 | |
| 1423 | |
| 1424 | // clean up the temporary component buffers |
| 1425 | static void cleanup_jpeg(jpeg *j) |
| 1426 | { |
| 1427 | int i; |
| 1428 | for (i=0; i < j->s.img_n; ++i) { |
| 1429 | if (j->img_comp[i].data) { |
| 1430 | free(j->img_comp[i].raw_data); |
| 1431 | j->img_comp[i].data = NULL((void*)0); |
| 1432 | } |
| 1433 | if (j->img_comp[i].linebuf) { |
| 1434 | free(j->img_comp[i].linebuf); |
| 1435 | j->img_comp[i].linebuf = NULL((void*)0); |
| 1436 | } |
| 1437 | } |
| 1438 | } |
| 1439 | |
| 1440 | typedef struct |
| 1441 | { |
| 1442 | resample_row_func resample; |
| 1443 | uint8 *line0,*line1; |
| 1444 | int hs,vs; // expansion factor in each axis |
| 1445 | int w_lores; // horizontal pixels pre-expansion |
| 1446 | int ystep; // how far through vertical expansion we are |
| 1447 | int ypos; // which pre-expansion row we're on |
| 1448 | } stbi_resample; |
| 1449 | |
| 1450 | static uint8 *load_jpeg_image(jpeg *z, int *out_x, int *out_y, int *comp, int req_comp) |
| 1451 | { |
| 1452 | int n, decode_n; |
| 1453 | // validate req_comp |
| 1454 | if (req_comp < 0 || req_comp > 4) return epuc("bad req_comp", "Internal error")((unsigned char *) (e("Internal error")?((void*)0):((void*)0) )); |
| 1455 | z->s.img_n = 0; |
| 1456 | |
| 1457 | // load a jpeg image from whichever source |
| 1458 | if (!decode_jpeg_image(z)) { cleanup_jpeg(z); return NULL((void*)0); } |
| 1459 | |
| 1460 | // determine actual number of components to generate |
| 1461 | n = req_comp ? req_comp : z->s.img_n; |
| 1462 | |
| 1463 | if (z->s.img_n == 3 && n < 3) |
| 1464 | decode_n = 1; |
| 1465 | else |
| 1466 | decode_n = z->s.img_n; |
| 1467 | |
| 1468 | // resample and color-convert |
| 1469 | { |
| 1470 | int k; |
| 1471 | uint i,j; |
| 1472 | uint8 *output; |
| 1473 | uint8 *coutput[4]; |
| 1474 | |
| 1475 | stbi_resample res_comp[4]; |
| 1476 | |
| 1477 | for (k=0; k < decode_n; ++k) { |
| 1478 | stbi_resample *r = &res_comp[k]; |
| 1479 | |
| 1480 | // allocate line buffer big enough for upsampling off the edges |
| 1481 | // with upsample factor of 4 |
| 1482 | z->img_comp[k].linebuf = (uint8 *) malloc(z->s.img_x + 3); |
| 1483 | if (!z->img_comp[k].linebuf) { cleanup_jpeg(z); return epuc("outofmem", "Out of memory")((unsigned char *) (e("Out of memory")?((void*)0):((void*)0)) ); } |
| 1484 | |
| 1485 | r->hs = z->img_h_max / z->img_comp[k].h; |
| 1486 | r->vs = z->img_v_max / z->img_comp[k].v; |
| 1487 | r->ystep = r->vs >> 1; |
| 1488 | r->w_lores = (z->s.img_x + r->hs-1) / r->hs; |
| 1489 | r->ypos = 0; |
| 1490 | r->line0 = r->line1 = z->img_comp[k].data; |
| 1491 | |
| 1492 | if (r->hs == 1 && r->vs == 1) r->resample = resample_row_1; |
| 1493 | else if (r->hs == 1 && r->vs == 2) r->resample = resample_row_v_2; |
| 1494 | else if (r->hs == 2 && r->vs == 1) r->resample = resample_row_h_2; |
| 1495 | else if (r->hs == 2 && r->vs == 2) r->resample = resample_row_hv_2; |
| 1496 | else r->resample = resample_row_generic; |
| 1497 | } |
| 1498 | |
| 1499 | // can't error after this so, this is safe |
| 1500 | output = (uint8 *) malloc(n * z->s.img_x * z->s.img_y + 1); |
| 1501 | if (!output) { cleanup_jpeg(z); return epuc("outofmem", "Out of memory")((unsigned char *) (e("Out of memory")?((void*)0):((void*)0)) ); } |
| 1502 | |
| 1503 | // now go ahead and resample |
| 1504 | for (j=0; j < z->s.img_y; ++j) { |
| 1505 | uint8 *out = output + n * z->s.img_x * j; |
| 1506 | for (k=0; k < decode_n; ++k) { |
| 1507 | stbi_resample *r = &res_comp[k]; |
| 1508 | int y_bot = r->ystep >= (r->vs >> 1); |
| 1509 | coutput[k] = r->resample(z->img_comp[k].linebuf, |
| 1510 | y_bot ? r->line1 : r->line0, |
| 1511 | y_bot ? r->line0 : r->line1, |
| 1512 | r->w_lores, r->hs); |
| 1513 | if (++r->ystep >= r->vs) { |
| 1514 | r->ystep = 0; |
| 1515 | r->line0 = r->line1; |
| 1516 | if (++r->ypos < z->img_comp[k].y) |
| 1517 | r->line1 += z->img_comp[k].w2; |
| 1518 | } |
| 1519 | } |
| 1520 | if (n >= 3) { |
| 1521 | uint8 *y = coutput[0]; |
| 1522 | if (z->s.img_n == 3) { |
| 1523 | #if STBI_SIMD |
| 1524 | stbi_YCbCr_installed(out, y, coutput[1], coutput[2], z->s.img_x, n); |
| 1525 | #else |
| 1526 | YCbCr_to_RGB_row(out, y, coutput[1], coutput[2], z->s.img_x, n); |
| 1527 | #endif |
| 1528 | } else |
| 1529 | for (i=0; i < z->s.img_x; ++i) { |
| 1530 | out[0] = out[1] = out[2] = y[i]; |
| 1531 | out[3] = 255; // not used if n==3 |
| 1532 | out += n; |
| 1533 | } |
| 1534 | } else { |
| 1535 | uint8 *y = coutput[0]; |
| 1536 | if (n == 1) |
| 1537 | for (i=0; i < z->s.img_x; ++i) out[i] = y[i]; |
| 1538 | else |
| 1539 | for (i=0; i < z->s.img_x; ++i) *out++ = y[i], *out++ = 255; |
| 1540 | } |
| 1541 | } |
| 1542 | cleanup_jpeg(z); |
| 1543 | *out_x = z->s.img_x; |
| 1544 | *out_y = z->s.img_y; |
| 1545 | if (comp) *comp = z->s.img_n; // report original components, not output |
| 1546 | return output; |
| 1547 | } |
| 1548 | } |
| 1549 | |
| 1550 | #ifndef STBI_NO_STDIO |
| 1551 | unsigned char *stbi_jpeg_load_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) |
| 1552 | { |
| 1553 | jpeg j; |
| 1554 | start_file(&j.s, f); |
| 1555 | return load_jpeg_image(&j, x,y,comp,req_comp); |
| 1556 | } |
| 1557 | |
| 1558 | unsigned char *stbi_jpeg_load(char const *filename, int *x, int *y, int *comp, int req_comp) |
| 1559 | { |
| 1560 | unsigned char *data; |
| 1561 | FILE *f = fopen(filename, "rb"); |
| 1562 | if (!f) return NULL((void*)0); |
| 1563 | data = stbi_jpeg_load_from_file(f,x,y,comp,req_comp); |
| 1564 | fclose(f); |
| 1565 | return data; |
| 1566 | } |
| 1567 | #endif |
| 1568 | |
| 1569 | unsigned char *stbi_jpeg_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) |
| 1570 | { |
| 1571 | jpeg j; |
| 1572 | start_mem(&j.s, buffer,len); |
| 1573 | return load_jpeg_image(&j, x,y,comp,req_comp); |
| 1574 | } |
| 1575 | |
| 1576 | #ifndef STBI_NO_STDIO |
| 1577 | int stbi_jpeg_test_file(FILE *f) |
| 1578 | { |
| 1579 | int n,r; |
| 1580 | jpeg j; |
| 1581 | n = ftell(f); |
| 1582 | start_file(&j.s, f); |
| 1583 | r = decode_jpeg_header(&j, SCAN_type); |
| 1584 | fseek(f,n,SEEK_SET0); |
| 1585 | return r; |
| 1586 | } |
| 1587 | #endif |
| 1588 | |
| 1589 | int stbi_jpeg_test_memory(stbi_uc const *buffer, int len) |
| 1590 | { |
| 1591 | jpeg j; |
| 1592 | start_mem(&j.s, buffer,len); |
| 1593 | return decode_jpeg_header(&j, SCAN_type); |
| 1594 | } |
| 1595 | |
| 1596 | // @TODO: |
| 1597 | #ifndef STBI_NO_STDIO |
| 1598 | extern int stbi_jpeg_info (char const *filename, int *x, int *y, int *comp); |
| 1599 | extern int stbi_jpeg_info_from_file (FILE *f, int *x, int *y, int *comp); |
| 1600 | #endif |
| 1601 | extern int stbi_jpeg_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp); |
| 1602 | |
| 1603 | // public domain zlib decode v0.2 Sean Barrett 2006-11-18 |
| 1604 | // simple implementation |
| 1605 | // - all input must be provided in an upfront buffer |
| 1606 | // - all output is written to a single output buffer (can malloc/realloc) |
| 1607 | // performance |
| 1608 | // - fast huffman |
| 1609 | |
| 1610 | // fast-way is faster to check than jpeg huffman, but slow way is slower |
| 1611 | #define ZFAST_BITS9 9 // accelerate all cases in default tables |
| 1612 | #define ZFAST_MASK((1 << 9) - 1) ((1 << ZFAST_BITS9) - 1) |
| 1613 | |
| 1614 | // zlib-style huffman encoding |
| 1615 | // (jpegs packs from left, zlib from right, so can't share code) |
| 1616 | typedef struct |
| 1617 | { |
| 1618 | uint16 fast[1 << ZFAST_BITS9]; |
| 1619 | uint16 firstcode[16]; |
| 1620 | int maxcode[17]; |
| 1621 | uint16 firstsymbol[16]; |
| 1622 | uint8 size[288]; |
| 1623 | uint16 value[288]; |
| 1624 | } zhuffman; |
| 1625 | |
| 1626 | __forceinline static int bitreverse16(int n) |
| 1627 | { |
| 1628 | n = ((n & 0xAAAA) >> 1) | ((n & 0x5555) << 1); |
| 1629 | n = ((n & 0xCCCC) >> 2) | ((n & 0x3333) << 2); |
| 1630 | n = ((n & 0xF0F0) >> 4) | ((n & 0x0F0F) << 4); |
| 1631 | n = ((n & 0xFF00) >> 8) | ((n & 0x00FF) << 8); |
| 1632 | return n; |
| 1633 | } |
| 1634 | |
| 1635 | __forceinline static int bit_reverse(int v, int bits) |
| 1636 | { |
| 1637 | assert(bits <= 16)((void) (0)); |
| 1638 | // to bit reverse n bits, reverse 16 and shift |
| 1639 | // e.g. 11 bits, bit reverse and shift away 5 |
| 1640 | return bitreverse16(v) >> (16-bits); |
| 1641 | } |
| 1642 | |
| 1643 | static int zbuild_huffman(zhuffman *z, uint8 *sizelist, int num) |
| 1644 | { |
| 1645 | int i,k=0; |
| 1646 | int code, next_code[16], sizes[17]; |
| 1647 | |
| 1648 | // DEFLATE spec for generating codes |
| 1649 | memset(sizes, 0, sizeof(sizes)); |
| 1650 | memset(z->fast, 255, sizeof(z->fast)); |
| 1651 | for (i=0; i < num; ++i) |
| 1652 | ++sizes[sizelist[i]]; |
| 1653 | sizes[0] = 0; |
| 1654 | for (i=1; i < 16; ++i) |
| 1655 | assert(sizes[i] <= (1 << i))((void) (0)); |
| 1656 | code = 0; |
| 1657 | for (i=1; i < 16; ++i) { |
| 1658 | next_code[i] = code; |
| 1659 | z->firstcode[i] = (uint16) code; |
| 1660 | z->firstsymbol[i] = (uint16) k; |
| 1661 | code = (code + sizes[i]); |
| 1662 | if (sizes[i]) |
| 1663 | if (code-1 >= (1 << i)) return e("bad codelengths","Corrupt JPEG")e("Corrupt JPEG"); |
| 1664 | z->maxcode[i] = code << (16-i); // preshift for inner loop |
| 1665 | code <<= 1; |
| 1666 | k += sizes[i]; |
| 1667 | } |
| 1668 | z->maxcode[16] = 0x10000; // sentinel |
| 1669 | for (i=0; i < num; ++i) { |
| 1670 | int s = sizelist[i]; |
| 1671 | if (s) { |
| 1672 | int c = next_code[s] - z->firstcode[s] + z->firstsymbol[s]; |
| 1673 | z->size[c] = (uint8)s; |
| 1674 | z->value[c] = (uint16)i; |
| 1675 | if (s <= ZFAST_BITS9) { |
| 1676 | int k2 = bit_reverse(next_code[s],s); |
| 1677 | while (k2 < (1 << ZFAST_BITS9)) { |
| 1678 | z->fast[k2] = (uint16) c; |
| 1679 | k2 += (1 << s); |
| 1680 | } |
| 1681 | } |
| 1682 | ++next_code[s]; |
| 1683 | } |
| 1684 | } |
| 1685 | return 1; |
| 1686 | } |
| 1687 | |
| 1688 | // zlib-from-memory implementation for PNG reading |
| 1689 | // because PNG allows splitting the zlib stream arbitrarily, |
| 1690 | // and it's annoying structurally to have PNG call ZLIB call PNG, |
| 1691 | // we require PNG read all the IDATs and combine them into a single |
| 1692 | // memory buffer |
| 1693 | |
| 1694 | typedef struct |
| 1695 | { |
| 1696 | uint8 *zbuffer, *zbuffer_end; |
| 1697 | int num_bits; |
| 1698 | uint32 code_buffer; |
| 1699 | |
| 1700 | char *zout; |
| 1701 | char *zout_start; |
| 1702 | char *zout_end; |
| 1703 | int z_expandable; |
| 1704 | |
| 1705 | zhuffman z_length, z_distance; |
| 1706 | } zbuf; |
| 1707 | |
| 1708 | __forceinline static int zget8(zbuf *z) |
| 1709 | { |
| 1710 | if (z->zbuffer >= z->zbuffer_end) return 0; |
| 1711 | return *z->zbuffer++; |
| 1712 | } |
| 1713 | |
| 1714 | static void fill_bits(zbuf *z) |
| 1715 | { |
| 1716 | do { |
| 1717 | assert(z->code_buffer < (1U << z->num_bits))((void) (0)); |
| 1718 | z->code_buffer |= zget8(z) << z->num_bits; |
| 1719 | z->num_bits += 8; |
| 1720 | } while (z->num_bits <= 24); |
| 1721 | } |
| 1722 | |
| 1723 | __forceinline static unsigned int zreceive(zbuf *z, int n) |
| 1724 | { |
| 1725 | unsigned int k; |
| 1726 | if (z->num_bits < n) fill_bits(z); |
| 1727 | k = z->code_buffer & ((1 << n) - 1); |
| 1728 | z->code_buffer >>= n; |
| 1729 | z->num_bits -= n; |
| 1730 | return k; |
| 1731 | } |
| 1732 | |
| 1733 | __forceinline static int zhuffman_decode(zbuf *a, zhuffman *z) |
| 1734 | { |
| 1735 | int b,s,k; |
| 1736 | if (a->num_bits < 16) fill_bits(a); |
| 1737 | b = z->fast[a->code_buffer & ZFAST_MASK((1 << 9) - 1)]; |
| 1738 | if (b < 0xffff) { |
| 1739 | s = z->size[b]; |
| 1740 | a->code_buffer >>= s; |
| 1741 | a->num_bits -= s; |
| 1742 | return z->value[b]; |
| 1743 | } |
| 1744 | |
| 1745 | // not resolved by fast table, so compute it the slow way |
| 1746 | // use jpeg approach, which requires MSbits at top |
| 1747 | k = bit_reverse(a->code_buffer, 16); |
| 1748 | for (s=ZFAST_BITS9+1; ; ++s) |
| 1749 | if (k < z->maxcode[s]) |
| 1750 | break; |
| 1751 | if (s == 16) return -1; // invalid code! |
| 1752 | // code size is s, so: |
| 1753 | b = (k >> (16-s)) - z->firstcode[s] + z->firstsymbol[s]; |
| 1754 | assert(z->size[b] == s)((void) (0)); |
| 1755 | a->code_buffer >>= s; |
| 1756 | a->num_bits -= s; |
| 1757 | return z->value[b]; |
| 1758 | } |
| 1759 | |
| 1760 | static int expand(zbuf *z, int n) // need to make room for n bytes |
| 1761 | { |
| 1762 | char *q; |
| 1763 | int cur, limit; |
| 1764 | if (!z->z_expandable) return e("output buffer limit","Corrupt PNG")e("Corrupt PNG"); |
| 1765 | cur = (int) (z->zout - z->zout_start); |
| 1766 | limit = (int) (z->zout_end - z->zout_start); |
| 1767 | while (cur + n > limit) |
| 1768 | limit *= 2; |
| 1769 | q = (char *) realloc(z->zout_start, limit); |
| 1770 | if (q == NULL((void*)0)) return e("outofmem", "Out of memory")e("Out of memory"); |
| 1771 | z->zout_start = q; |
| 1772 | z->zout = q + cur; |
| 1773 | z->zout_end = q + limit; |
| 1774 | return 1; |
| 1775 | } |
| 1776 | |
| 1777 | static int length_base[31] = { |
| 1778 | 3,4,5,6,7,8,9,10,11,13, |
| 1779 | 15,17,19,23,27,31,35,43,51,59, |
| 1780 | 67,83,99,115,131,163,195,227,258,0,0 }; |
| 1781 | |
| 1782 | static int length_extra[31]= |
| 1783 | { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0,0,0 }; |
| 1784 | |
| 1785 | static int dist_base[32] = { 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193, |
| 1786 | 257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577,0,0}; |
| 1787 | |
| 1788 | static int dist_extra[32] = |
| 1789 | { 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; |
| 1790 | |
| 1791 | static int parse_huffman_block(zbuf *a) |
| 1792 | { |
| 1793 | for(;;) { |
| 1794 | int z = zhuffman_decode(a, &a->z_length); |
| 1795 | if (z < 256) { |
| 1796 | if (z < 0) return e("bad huffman code","Corrupt PNG")e("Corrupt PNG"); // error in huffman codes |
| 1797 | if (a->zout >= a->zout_end) if (!expand(a, 1)) return 0; |
| 1798 | *a->zout++ = (char) z; |
| 1799 | } else { |
| 1800 | uint8 *p; |
| 1801 | int len,dist; |
| 1802 | if (z == 256) return 1; |
| 1803 | z -= 257; |
| 1804 | len = length_base[z]; |
| 1805 | if (length_extra[z]) len += zreceive(a, length_extra[z]); |
| 1806 | z = zhuffman_decode(a, &a->z_distance); |
| 1807 | if (z < 0) return e("bad huffman code","Corrupt PNG")e("Corrupt PNG"); |
| 1808 | dist = dist_base[z]; |
| 1809 | if (dist_extra[z]) dist += zreceive(a, dist_extra[z]); |
| 1810 | if (a->zout - a->zout_start < dist) return e("bad dist","Corrupt PNG")e("Corrupt PNG"); |
| 1811 | if (a->zout + len > a->zout_end) if (!expand(a, len)) return 0; |
| 1812 | p = (uint8 *) (a->zout - dist); |
| 1813 | while (len--) |
| 1814 | *a->zout++ = *p++; |
| 1815 | } |
| 1816 | } |
| 1817 | } |
| 1818 | |
| 1819 | static int compute_huffman_codes(zbuf *a) |
| 1820 | { |
| 1821 | static uint8 length_dezigzag[19] = { 16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15 }; |
| 1822 | zhuffman z_codelength; |
| 1823 | uint8 lencodes[286+32+137];//padding for maximum single op |
| 1824 | uint8 codelength_sizes[19]; |
| 1825 | int i,n; |
| 1826 | |
| 1827 | int hlit = zreceive(a,5) + 257; |
| 1828 | int hdist = zreceive(a,5) + 1; |
| 1829 | int hclen = zreceive(a,4) + 4; |
| 1830 | |
| 1831 | memset(codelength_sizes, 0, sizeof(codelength_sizes)); |
| 1832 | for (i=0; i < hclen; ++i) { |
| 1833 | int s = zreceive(a,3); |
| 1834 | codelength_sizes[length_dezigzag[i]] = (uint8) s; |
| 1835 | } |
| 1836 | if (!zbuild_huffman(&z_codelength, codelength_sizes, 19)) return 0; |
| 1837 | |
| 1838 | n = 0; |
| 1839 | while (n < hlit + hdist) { |
| 1840 | int c = zhuffman_decode(a, &z_codelength); |
| 1841 | assert(c >= 0 && c < 19)((void) (0)); |
| 1842 | if (c < 16) |
| 1843 | lencodes[n++] = (uint8) c; |
| 1844 | else if (c == 16) { |
| 1845 | c = zreceive(a,2)+3; |
| 1846 | memset(lencodes+n, lencodes[n-1], c); |
| 1847 | n += c; |
| 1848 | } else if (c == 17) { |
| 1849 | c = zreceive(a,3)+3; |
| 1850 | memset(lencodes+n, 0, c); |
| 1851 | n += c; |
| 1852 | } else { |
| 1853 | assert(c == 18)((void) (0)); |
| 1854 | c = zreceive(a,7)+11; |
| 1855 | memset(lencodes+n, 0, c); |
| 1856 | n += c; |
| 1857 | } |
| 1858 | } |
| 1859 | if (n != hlit+hdist) return e("bad codelengths","Corrupt PNG")e("Corrupt PNG"); |
| 1860 | if (!zbuild_huffman(&a->z_length, lencodes, hlit)) return 0; |
| 1861 | if (!zbuild_huffman(&a->z_distance, lencodes+hlit, hdist)) return 0; |
| 1862 | return 1; |
| 1863 | } |
| 1864 | |
| 1865 | static int parse_uncompressed_block(zbuf *a) |
| 1866 | { |
| 1867 | uint8 header[4]; |
| 1868 | int len,nlen,k; |
| 1869 | if (a->num_bits & 7) |
| 1870 | zreceive(a, a->num_bits & 7); // discard |
| 1871 | // drain the bit-packed data into header |
| 1872 | k = 0; |
| 1873 | while (a->num_bits > 0) { |
| 1874 | header[k++] = (uint8) (a->code_buffer & 255); // wtf this warns? |
| 1875 | a->code_buffer >>= 8; |
| 1876 | a->num_bits -= 8; |
| 1877 | } |
| 1878 | assert(a->num_bits == 0)((void) (0)); |
| 1879 | // now fill header the normal way |
| 1880 | while (k < 4) |
| 1881 | header[k++] = (uint8) zget8(a); |
| 1882 | len = header[1] * 256 + header[0]; |
| 1883 | nlen = header[3] * 256 + header[2]; |
| 1884 | if (nlen != (len ^ 0xffff)) return e("zlib corrupt","Corrupt PNG")e("Corrupt PNG"); |
| 1885 | if (a->zbuffer + len > a->zbuffer_end) return e("read past buffer","Corrupt PNG")e("Corrupt PNG"); |
| 1886 | if (a->zout + len > a->zout_end) |
| 1887 | if (!expand(a, len)) return 0; |
| 1888 | memcpy(a->zout, a->zbuffer, len); |
| 1889 | a->zbuffer += len; |
| 1890 | a->zout += len; |
| 1891 | return 1; |
| 1892 | } |
| 1893 | |
| 1894 | static int parse_zlib_header(zbuf *a) |
| 1895 | { |
| 1896 | int cmf = zget8(a); |
| 1897 | int cm = cmf & 15; |
| 1898 | /* int cinfo = cmf >> 4; */ |
| 1899 | int flg = zget8(a); |
| 1900 | if ((cmf*256+flg) % 31 != 0) return e("bad zlib header","Corrupt PNG")e("Corrupt PNG"); // zlib spec |
| 1901 | if (flg & 32) return e("no preset dict","Corrupt PNG")e("Corrupt PNG"); // preset dictionary not allowed in png |
| 1902 | if (cm != 8) return e("bad compression","Corrupt PNG")e("Corrupt PNG"); // DEFLATE required for png |
| 1903 | // window = 1 << (8 + cinfo)... but who cares, we fully buffer output |
| 1904 | return 1; |
| 1905 | } |
| 1906 | |
| 1907 | // @TODO: should statically initialize these for optimal thread safety |
| 1908 | static uint8 default_length[288], default_distance[32]; |
| 1909 | static void init_defaults(void) |
| 1910 | { |
| 1911 | int i; // use <= to match clearly with spec |
| 1912 | for (i=0; i <= 143; ++i) default_length[i] = 8; |
| 1913 | for ( ; i <= 255; ++i) default_length[i] = 9; |
| 1914 | for ( ; i <= 279; ++i) default_length[i] = 7; |
| 1915 | for ( ; i <= 287; ++i) default_length[i] = 8; |
| 1916 | |
| 1917 | for (i=0; i <= 31; ++i) default_distance[i] = 5; |
| 1918 | } |
| 1919 | |
| 1920 | int stbi_png_partial; // a quick hack to only allow decoding some of a PNG... I should implement real streaming support instead |
| 1921 | static int parse_zlib(zbuf *a, int parse_header) |
| 1922 | { |
| 1923 | int final, type; |
| 1924 | if (parse_header) |
| 1925 | if (!parse_zlib_header(a)) return 0; |
| 1926 | a->num_bits = 0; |
| 1927 | a->code_buffer = 0; |
| 1928 | do { |
| 1929 | final = zreceive(a,1); |
| 1930 | type = zreceive(a,2); |
| 1931 | if (type == 0) { |
| 1932 | if (!parse_uncompressed_block(a)) return 0; |
| 1933 | } else if (type == 3) { |
| 1934 | return 0; |
| 1935 | } else { |
| 1936 | if (type == 1) { |
| 1937 | // use fixed code lengths |
| 1938 | if (!default_distance[31]) init_defaults(); |
| 1939 | if (!zbuild_huffman(&a->z_length , default_length , 288)) return 0; |
| 1940 | if (!zbuild_huffman(&a->z_distance, default_distance, 32)) return 0; |
| 1941 | } else { |
| 1942 | if (!compute_huffman_codes(a)) return 0; |
| 1943 | } |
| 1944 | if (!parse_huffman_block(a)) return 0; |
| 1945 | } |
| 1946 | if (stbi_png_partial && a->zout - a->zout_start > 65536) |
| 1947 | break; |
| 1948 | } while (!final); |
| 1949 | return 1; |
| 1950 | } |
| 1951 | |
| 1952 | static int do_zlib(zbuf *a, char *obuf, int olen, int expandable, int parse_header) |
| 1953 | { |
| 1954 | a->zout_start = obuf; |
| 1955 | a->zout = obuf; |
| 1956 | a->zout_end = obuf + olen; |
| 1957 | a->z_expandable = expandable; |
| 1958 | |
| 1959 | return parse_zlib(a, parse_header); |
| 1960 | } |
| 1961 | |
| 1962 | char *stbi_zlib_decode_malloc_guesssize(const char *buffer, int len, int initial_size, int *outlen) |
| 1963 | { |
| 1964 | zbuf a; |
| 1965 | char *p = (char *) malloc(initial_size); |
| 1966 | if (p == NULL((void*)0)) return NULL((void*)0); |
| 1967 | a.zbuffer = (uint8 *) buffer; |
| 1968 | a.zbuffer_end = (uint8 *) buffer + len; |
| 1969 | if (do_zlib(&a, p, initial_size, 1, 1)) { |
| 1970 | if (outlen) *outlen = (int) (a.zout - a.zout_start); |
| 1971 | return a.zout_start; |
| 1972 | } else { |
| 1973 | free(a.zout_start); |
| 1974 | return NULL((void*)0); |
| 1975 | } |
| 1976 | } |
| 1977 | |
| 1978 | char *stbi_zlib_decode_malloc(char const *buffer, int len, int *outlen) |
| 1979 | { |
| 1980 | return stbi_zlib_decode_malloc_guesssize(buffer, len, 16384, outlen); |
| 1981 | } |
| 1982 | |
| 1983 | int stbi_zlib_decode_buffer(char *obuffer, int olen, char const *ibuffer, int ilen) |
| 1984 | { |
| 1985 | zbuf a; |
| 1986 | a.zbuffer = (uint8 *) ibuffer; |
| 1987 | a.zbuffer_end = (uint8 *) ibuffer + ilen; |
| 1988 | if (do_zlib(&a, obuffer, olen, 0, 1)) |
| 1989 | return (int) (a.zout - a.zout_start); |
| 1990 | else |
| 1991 | return -1; |
| 1992 | } |
| 1993 | |
| 1994 | char *stbi_zlib_decode_noheader_malloc(char const *buffer, int len, int *outlen) |
| 1995 | { |
| 1996 | zbuf a; |
| 1997 | char *p = (char *) malloc(16384); |
| 1998 | if (p == NULL((void*)0)) return NULL((void*)0); |
| 1999 | a.zbuffer = (uint8 *) buffer; |
| 2000 | a.zbuffer_end = (uint8 *) buffer+len; |
| 2001 | if (do_zlib(&a, p, 16384, 1, 0)) { |
| 2002 | if (outlen) *outlen = (int) (a.zout - a.zout_start); |
| 2003 | return a.zout_start; |
| 2004 | } else { |
| 2005 | free(a.zout_start); |
| 2006 | return NULL((void*)0); |
| 2007 | } |
| 2008 | } |
| 2009 | |
| 2010 | int stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, const char *ibuffer, int ilen) |
| 2011 | { |
| 2012 | zbuf a; |
| 2013 | a.zbuffer = (uint8 *) ibuffer; |
| 2014 | a.zbuffer_end = (uint8 *) ibuffer + ilen; |
| 2015 | if (do_zlib(&a, obuffer, olen, 0, 0)) |
| 2016 | return (int) (a.zout - a.zout_start); |
| 2017 | else |
| 2018 | return -1; |
| 2019 | } |
| 2020 | |
| 2021 | // public domain "baseline" PNG decoder v0.10 Sean Barrett 2006-11-18 |
| 2022 | // simple implementation |
| 2023 | // - only 8-bit samples |
| 2024 | // - no CRC checking |
| 2025 | // - allocates lots of intermediate memory |
| 2026 | // - avoids problem of streaming data between subsystems |
| 2027 | // - avoids explicit window management |
| 2028 | // performance |
| 2029 | // - uses stb_zlib, a PD zlib implementation with fast huffman decoding |
| 2030 | |
| 2031 | |
| 2032 | typedef struct |
| 2033 | { |
| 2034 | uint32 length; |
| 2035 | uint32 type; |
| 2036 | } chunk; |
| 2037 | |
| 2038 | #define PNG_TYPE(a,b,c,d)(((a) << 24) + ((b) << 16) + ((c) << 8) + ( d)) (((a) << 24) + ((b) << 16) + ((c) << 8) + (d)) |
| 2039 | |
| 2040 | static chunk get_chunk_header(stbi *s) |
| 2041 | { |
| 2042 | chunk c; |
| 2043 | c.length = get32(s); |
| 2044 | c.type = get32(s); |
| 2045 | return c; |
| 2046 | } |
| 2047 | |
| 2048 | static int check_png_header(stbi *s) |
| 2049 | { |
| 2050 | static uint8 png_sig[8] = { 137,80,78,71,13,10,26,10 }; |
| 2051 | int i; |
| 2052 | for (i=0; i < 8; ++i) |
| 2053 | if (get8(s) != png_sig[i]) return e("bad png sig","Not a PNG")e("Not a PNG"); |
| 2054 | return 1; |
| 2055 | } |
| 2056 | |
| 2057 | typedef struct |
| 2058 | { |
| 2059 | stbi s; |
| 2060 | uint8 *idata, *expanded, *out; |
| 2061 | } png; |
| 2062 | |
| 2063 | |
| 2064 | enum { |
| 2065 | F_none=0, F_sub=1, F_up=2, F_avg=3, F_paeth=4, |
| 2066 | F_avg_first, F_paeth_first, |
| 2067 | }; |
| 2068 | |
| 2069 | static uint8 first_row_filter[5] = |
| 2070 | { |
| 2071 | F_none, F_sub, F_none, F_avg_first, F_paeth_first |
| 2072 | }; |
| 2073 | |
| 2074 | static int paeth(int a, int b, int c) |
| 2075 | { |
| 2076 | int p = a + b - c; |
| 2077 | int pa = abs(p-a); |
| 2078 | int pb = abs(p-b); |
| 2079 | int pc = abs(p-c); |
| 2080 | if (pa <= pb && pa <= pc) return a; |
| 2081 | if (pb <= pc) return b; |
| 2082 | return c; |
| 2083 | } |
| 2084 | |
| 2085 | // create the png data from post-deflated data |
| 2086 | static int create_png_image_raw(png *a, uint8 *raw, uint32 raw_len, int out_n, uint32 x, uint32 y) |
| 2087 | { |
| 2088 | stbi *s = &a->s; |
| 2089 | uint32 i,j,stride = x*out_n; |
| 2090 | int k; |
| 2091 | int img_n = s->img_n; // copy it into a local for later |
| 2092 | assert(out_n == s->img_n || out_n == s->img_n+1)((void) (0)); |
| 2093 | if (stbi_png_partial) y = 1; |
| 2094 | a->out = (uint8 *) malloc(x * y * out_n); |
| 2095 | if (!a->out) return e("outofmem", "Out of memory")e("Out of memory"); |
| 2096 | if (!stbi_png_partial) { |
| 2097 | if (s->img_x == x && s->img_y == y) { |
| 2098 | if (raw_len != (img_n * x + 1) * y) |
| 2099 | return e("not enough pixels","Corrupt PNG")e("Corrupt PNG"); |
| 2100 | } else { // interlaced: |
| 2101 | if (raw_len < (img_n * x + 1) * y) |
| 2102 | return e("not enough pixels","Corrupt PNG")e("Corrupt PNG"); |
| 2103 | } |
| 2104 | } |
| 2105 | for (j=0; j < y; ++j) { |
| 2106 | uint8 *cur = a->out + stride*j; |
| 2107 | uint8 *prior = cur - stride; |
| 2108 | int filter = *raw++; |
| 2109 | if (filter > 4) return e("invalid filter","Corrupt PNG")e("Corrupt PNG"); |
| 2110 | // if first row, use special filter that doesn't sample previous row |
| 2111 | if (j == 0) filter = first_row_filter[filter]; |
| 2112 | // handle first pixel explicitly |
| 2113 | for (k=0; k < img_n; ++k) { |
| 2114 | switch(filter) { |
| 2115 | case F_none : cur[k] = raw[k]; break; |
| 2116 | case F_sub : cur[k] = raw[k]; break; |
| 2117 | case F_up : cur[k] = raw[k] + prior[k]; break; |
| 2118 | case F_avg : cur[k] = raw[k] + (prior[k]>>1); break; |
| 2119 | case F_paeth : cur[k] = (uint8) (raw[k] + paeth(0,prior[k],0)); break; |
| 2120 | case F_avg_first : cur[k] = raw[k]; break; |
| 2121 | case F_paeth_first: cur[k] = raw[k]; break; |
| 2122 | } |
| 2123 | } |
| 2124 | if (img_n != out_n) cur[img_n] = 255; |
| 2125 | raw += img_n; |
| 2126 | cur += out_n; |
| 2127 | prior += out_n; |
| 2128 | // this is a little gross, so that we don't switch per-pixel or per-component |
| 2129 | if (img_n == out_n) { |
| 2130 | #define CASE(f) \ |
| 2131 | case f: \ |
| 2132 | for (i=x-1; i >= 1; --i, raw+=img_n,cur+=img_n,prior+=img_n) \ |
| 2133 | for (k=0; k < img_n; ++k) |
| 2134 | switch(filter) { |
| 2135 | CASE(F_none) cur[k] = raw[k]; break; |
| 2136 | CASE(F_sub) cur[k] = raw[k] + cur[k-img_n]; break; |
| 2137 | CASE(F_up) cur[k] = raw[k] + prior[k]; break; |
| 2138 | CASE(F_avg) cur[k] = raw[k] + ((prior[k] + cur[k-img_n])>>1); break; |
| 2139 | CASE(F_paeth) cur[k] = (uint8) (raw[k] + paeth(cur[k-img_n],prior[k],prior[k-img_n])); break; |
| 2140 | CASE(F_avg_first) cur[k] = raw[k] + (cur[k-img_n] >> 1); break; |
| 2141 | CASE(F_paeth_first) cur[k] = (uint8) (raw[k] + paeth(cur[k-img_n],0,0)); break; |
| 2142 | } |
| 2143 | #undef CASE |
| 2144 | } else { |
| 2145 | assert(img_n+1 == out_n)((void) (0)); |
| 2146 | #define CASE(f) \ |
| 2147 | case f: \ |
| 2148 | for (i=x-1; i >= 1; --i, cur[img_n]=255,raw+=img_n,cur+=out_n,prior+=out_n) \ |
| 2149 | for (k=0; k < img_n; ++k) |
| 2150 | switch(filter) { |
| 2151 | CASE(F_none) cur[k] = raw[k]; break; |
| 2152 | CASE(F_sub) cur[k] = raw[k] + cur[k-out_n]; break; |
| 2153 | CASE(F_up) cur[k] = raw[k] + prior[k]; break; |
| 2154 | CASE(F_avg) cur[k] = raw[k] + ((prior[k] + cur[k-out_n])>>1); break; |
| 2155 | CASE(F_paeth) cur[k] = (uint8) (raw[k] + paeth(cur[k-out_n],prior[k],prior[k-out_n])); break; |
| 2156 | CASE(F_avg_first) cur[k] = raw[k] + (cur[k-out_n] >> 1); break; |
| 2157 | CASE(F_paeth_first) cur[k] = (uint8) (raw[k] + paeth(cur[k-out_n],0,0)); break; |
| 2158 | } |
| 2159 | #undef CASE |
| 2160 | } |
| 2161 | } |
| 2162 | return 1; |
| 2163 | } |
| 2164 | |
| 2165 | static int create_png_image(png *a, uint8 *raw, uint32 raw_len, int out_n, int interlaced) |
| 2166 | { |
| 2167 | uint8 *final; |
| 2168 | int p; |
| 2169 | int save; |
| 2170 | if (!interlaced) |
| 2171 | return create_png_image_raw(a, raw, raw_len, out_n, a->s.img_x, a->s.img_y); |
| 2172 | save = stbi_png_partial; |
| 2173 | stbi_png_partial = 0; |
| 2174 | |
| 2175 | // de-interlacing |
| 2176 | final = (uint8 *) malloc(a->s.img_x * a->s.img_y * out_n); |
| 2177 | for (p=0; p < 7; ++p) { |
| 2178 | int xorig[] = { 0,4,0,2,0,1,0 }; |
| 2179 | int yorig[] = { 0,0,4,0,2,0,1 }; |
| 2180 | int xspc[] = { 8,8,4,4,2,2,1 }; |
| 2181 | int yspc[] = { 8,8,8,4,4,2,2 }; |
| 2182 | int i,j,x,y; |
| 2183 | // pass1_x[4] = 0, pass1_x[5] = 1, pass1_x[12] = 1 |
| 2184 | x = (a->s.img_x - xorig[p] + xspc[p]-1) / xspc[p]; |
| 2185 | y = (a->s.img_y - yorig[p] + yspc[p]-1) / yspc[p]; |
| 2186 | if (x && y) { |
| 2187 | if (!create_png_image_raw(a, raw, raw_len, out_n, x, y)) { |
| 2188 | free(final); |
| 2189 | return 0; |
| 2190 | } |
| 2191 | for (j=0; j < y; ++j) |
| 2192 | for (i=0; i < x; ++i) |
| 2193 | memcpy(final + (j*yspc[p]+yorig[p])*a->s.img_x*out_n + (i*xspc[p]+xorig[p])*out_n, |
| 2194 | a->out + (j*x+i)*out_n, out_n); |
| 2195 | free(a->out); |
| 2196 | raw += (x*out_n+1)*y; |
| 2197 | raw_len -= (x*out_n+1)*y; |
| 2198 | } |
| 2199 | } |
| 2200 | a->out = final; |
| 2201 | |
| 2202 | stbi_png_partial = save; |
| 2203 | return 1; |
| 2204 | } |
| 2205 | |
| 2206 | static int compute_transparency(png *z, uint8 tc[3], int out_n) |
| 2207 | { |
| 2208 | stbi *s = &z->s; |
| 2209 | uint32 i, pixel_count = s->img_x * s->img_y; |
| 2210 | uint8 *p = z->out; |
| 2211 | |
| 2212 | // compute color-based transparency, assuming we've |
| 2213 | // already got 255 as the alpha value in the output |
| 2214 | assert(out_n == 2 || out_n == 4)((void) (0)); |
| 2215 | |
| 2216 | if (out_n == 2) { |
| 2217 | for (i=0; i < pixel_count; ++i) { |
| 2218 | p[1] = (p[0] == tc[0] ? 0 : 255); |
| 2219 | p += 2; |
| 2220 | } |
| 2221 | } else { |
| 2222 | for (i=0; i < pixel_count; ++i) { |
| 2223 | if (p[0] == tc[0] && p[1] == tc[1] && p[2] == tc[2]) |
| 2224 | p[3] = 0; |
| 2225 | p += 4; |
| 2226 | } |
| 2227 | } |
| 2228 | return 1; |
| 2229 | } |
| 2230 | |
| 2231 | static int expand_palette(png *a, uint8 *palette, int len, int pal_img_n) |
| 2232 | { |
| 2233 | uint32 i, pixel_count = a->s.img_x * a->s.img_y; |
| 2234 | uint8 *p, *temp_out, *orig = a->out; |
| 2235 | |
| 2236 | p = (uint8 *) malloc(pixel_count * pal_img_n); |
| 2237 | if (p == NULL((void*)0)) return e("outofmem", "Out of memory")e("Out of memory"); |
| 2238 | |
| 2239 | // between here and free(out) below, exitting would leak |
| 2240 | temp_out = p; |
| 2241 | |
| 2242 | if (pal_img_n == 3) { |
| 2243 | for (i=0; i < pixel_count; ++i) { |
| 2244 | int n = orig[i]*4; |
| 2245 | p[0] = palette[n ]; |
| 2246 | p[1] = palette[n+1]; |
| 2247 | p[2] = palette[n+2]; |
| 2248 | p += 3; |
| 2249 | } |
| 2250 | } else { |
| 2251 | for (i=0; i < pixel_count; ++i) { |
| 2252 | int n = orig[i]*4; |
| 2253 | p[0] = palette[n ]; |
| 2254 | p[1] = palette[n+1]; |
| 2255 | p[2] = palette[n+2]; |
| 2256 | p[3] = palette[n+3]; |
| 2257 | p += 4; |
| 2258 | } |
| 2259 | } |
| 2260 | free(a->out); |
| 2261 | a->out = temp_out; |
| 2262 | return 1; |
| 2263 | } |
| 2264 | |
| 2265 | static int parse_png_file(png *z, int scan, int req_comp) |
| 2266 | { |
| 2267 | uint8 palette[1024], pal_img_n=0; |
| 2268 | uint8 has_trans=0, tc[3]; |
| 2269 | uint32 ioff=0, idata_limit=0, i, pal_len=0; |
| 2270 | int first=1,k,interlace=0; |
| 2271 | stbi *s = &z->s; |
| 2272 | |
| 2273 | if (!check_png_header(s)) return 0; |
| 2274 | |
| 2275 | if (scan == SCAN_type) return 1; |
| 2276 | |
| 2277 | for(;;first=0) { |
| 2278 | chunk c = get_chunk_header(s); |
| 2279 | if (first && c.type != PNG_TYPE('I','H','D','R')((('I') << 24) + (('H') << 16) + (('D') << 8 ) + ('R'))) |
| 2280 | return e("first not IHDR","Corrupt PNG")e("Corrupt PNG"); |
| 2281 | switch (c.type) { |
| 2282 | case PNG_TYPE('I','H','D','R')((('I') << 24) + (('H') << 16) + (('D') << 8 ) + ('R')): { |
| 2283 | int depth,color,comp,filter; |
| 2284 | if (!first) return e("multiple IHDR","Corrupt PNG")e("Corrupt PNG"); |
| 2285 | if (c.length != 13) return e("bad IHDR len","Corrupt PNG")e("Corrupt PNG"); |
| 2286 | s->img_x = get32(s); if (s->img_x > (1 << 24)) return e("too large","Very large image (corrupt?)")e("Very large image (corrupt?)"); |
| 2287 | s->img_y = get32(s); if (s->img_y > (1 << 24)) return e("too large","Very large image (corrupt?)")e("Very large image (corrupt?)"); |
| 2288 | depth = get8(s); if (depth != 8) return e("8bit only","PNG not supported: 8-bit only")e("PNG not supported: 8-bit only"); |
| 2289 | color = get8(s); if (color > 6) return e("bad ctype","Corrupt PNG")e("Corrupt PNG"); |
| 2290 | if (color == 3) pal_img_n = 3; else if (color & 1) return e("bad ctype","Corrupt PNG")e("Corrupt PNG"); |
| 2291 | comp = get8(s); if (comp) return e("bad comp method","Corrupt PNG")e("Corrupt PNG"); |
| 2292 | filter= get8(s); if (filter) return e("bad filter method","Corrupt PNG")e("Corrupt PNG"); |
| 2293 | interlace = get8(s); if (interlace>1) return e("bad interlace method","Corrupt PNG")e("Corrupt PNG"); |
| 2294 | if (!s->img_x || !s->img_y) return e("0-pixel image","Corrupt PNG")e("Corrupt PNG"); |
| 2295 | if (!pal_img_n) { |
| 2296 | s->img_n = (color & 2 ? 3 : 1) + (color & 4 ? 1 : 0); |
| 2297 | if ((1 << 30) / s->img_x / s->img_n < s->img_y) return e("too large", "Image too large to decode")e("Image too large to decode"); |
| 2298 | if (scan == SCAN_header) return 1; |
| 2299 | } else { |
| 2300 | // if paletted, then pal_n is our final components, and |
| 2301 | // img_n is # components to decompress/filter. |
| 2302 | s->img_n = 1; |
| 2303 | if ((1 << 30) / s->img_x / 4 < s->img_y) return e("too large","Corrupt PNG")e("Corrupt PNG"); |
| 2304 | // if SCAN_header, have to scan to see if we have a tRNS |
| 2305 | } |
| 2306 | break; |
| 2307 | } |
| 2308 | |
| 2309 | case PNG_TYPE('P','L','T','E')((('P') << 24) + (('L') << 16) + (('T') << 8 ) + ('E')): { |
| 2310 | if (c.length > 256*3) return e("invalid PLTE","Corrupt PNG")e("Corrupt PNG"); |
| 2311 | pal_len = c.length / 3; |
| 2312 | if (pal_len * 3 != c.length) return e("invalid PLTE","Corrupt PNG")e("Corrupt PNG"); |
| 2313 | for (i=0; i < pal_len; ++i) { |
| 2314 | palette[i*4+0] = get8u(s); |
| 2315 | palette[i*4+1] = get8u(s); |
| 2316 | palette[i*4+2] = get8u(s); |
| 2317 | palette[i*4+3] = 255; |
| 2318 | } |
| 2319 | break; |
| 2320 | } |
| 2321 | |
| 2322 | case PNG_TYPE('t','R','N','S')((('t') << 24) + (('R') << 16) + (('N') << 8 ) + ('S')): { |
| 2323 | if (z->idata) return e("tRNS after IDAT","Corrupt PNG")e("Corrupt PNG"); |
| 2324 | if (pal_img_n) { |
| 2325 | if (scan == SCAN_header) { s->img_n = 4; return 1; } |
| 2326 | if (pal_len == 0) return e("tRNS before PLTE","Corrupt PNG")e("Corrupt PNG"); |
| 2327 | if (c.length > pal_len) return e("bad tRNS len","Corrupt PNG")e("Corrupt PNG"); |
| 2328 | pal_img_n = 4; |
| 2329 | for (i=0; i < c.length; ++i) |
| 2330 | palette[i*4+3] = get8u(s); |
| 2331 | } else { |
| 2332 | if (!(s->img_n & 1)) return e("tRNS with alpha","Corrupt PNG")e("Corrupt PNG"); |
| 2333 | if (c.length != (uint32) s->img_n*2) return e("bad tRNS len","Corrupt PNG")e("Corrupt PNG"); |
| 2334 | has_trans = 1; |
| 2335 | for (k=0; k < s->img_n; ++k) |
| 2336 | tc[k] = (uint8) get16(s); // non 8-bit images will be larger |
| 2337 | } |
| 2338 | break; |
| 2339 | } |
| 2340 | |
| 2341 | case PNG_TYPE('I','D','A','T')((('I') << 24) + (('D') << 16) + (('A') << 8 ) + ('T')): { |
| 2342 | if (pal_img_n && !pal_len) return e("no PLTE","Corrupt PNG")e("Corrupt PNG"); |
| 2343 | if (scan == SCAN_header) { s->img_n = pal_img_n; return 1; } |
| 2344 | if (ioff + c.length > idata_limit) { |
| 2345 | uint8 *p; |
| 2346 | if (idata_limit == 0) idata_limit = c.length > 4096 ? c.length : 4096; |
| 2347 | while (ioff + c.length > idata_limit) |
| 2348 | idata_limit *= 2; |
| 2349 | p = (uint8 *) realloc(z->idata, idata_limit); if (p == NULL((void*)0)) return e("outofmem", "Out of memory")e("Out of memory"); |
| 2350 | z->idata = p; |
| 2351 | } |
| 2352 | #ifndef STBI_NO_STDIO |
| 2353 | if (s->img_file) |
| 2354 | { |
| 2355 | if (fread(z->idata+ioff,1,c.length,s->img_file) != c.length) return e("outofdata","Corrupt PNG")e("Corrupt PNG"); |
| 2356 | } |
| 2357 | else |
| 2358 | #endif |
| 2359 | { |
| 2360 | memcpy(z->idata+ioff, s->img_buffer, c.length); |
| 2361 | s->img_buffer += c.length; |
| 2362 | } |
| 2363 | ioff += c.length; |
| 2364 | break; |
| 2365 | } |
| 2366 | |
| 2367 | case PNG_TYPE('I','E','N','D')((('I') << 24) + (('E') << 16) + (('N') << 8 ) + ('D')): { |
| 2368 | uint32 raw_len; |
| 2369 | if (scan != SCAN_load) return 1; |
| 2370 | if (z->idata == NULL((void*)0)) return e("no IDAT","Corrupt PNG")e("Corrupt PNG"); |
| 2371 | z->expanded = (uint8 *) stbi_zlib_decode_malloc((char *) z->idata, ioff, (int *) &raw_len); |
| 2372 | if (z->expanded == NULL((void*)0)) return 0; // zlib should set error |
| 2373 | free(z->idata); z->idata = NULL((void*)0); |
| 2374 | if ((req_comp == s->img_n+1 && req_comp != 3 && !pal_img_n) || has_trans) |
| 2375 | s->img_out_n = s->img_n+1; |
| 2376 | else |
| 2377 | s->img_out_n = s->img_n; |
| 2378 | if (!create_png_image(z, z->expanded, raw_len, s->img_out_n, interlace)) return 0; |
| 2379 | if (has_trans) |
| 2380 | if (!compute_transparency(z, tc, s->img_out_n)) return 0; |
| 2381 | if (pal_img_n) { |
| 2382 | // pal_img_n == 3 or 4 |
| 2383 | s->img_n = pal_img_n; // record the actual colors we had |
| 2384 | s->img_out_n = pal_img_n; |
| 2385 | if (req_comp >= 3) s->img_out_n = req_comp; |
| 2386 | if (!expand_palette(z, palette, pal_len, s->img_out_n)) |
| 2387 | return 0; |
| 2388 | } |
| 2389 | free(z->expanded); z->expanded = NULL((void*)0); |
| 2390 | return 1; |
| 2391 | } |
| 2392 | |
| 2393 | default: |
| 2394 | // if critical, fail |
| 2395 | if ((c.type & (1 << 29)) == 0) { |
| 2396 | #ifndef STBI_NO_FAILURE_STRINGS |
| 2397 | #ifndef STBI_FAILURE_USERMSG1 |
| 2398 | // not threadsafe |
| 2399 | static char invalid_chunk[] = "XXXX chunk not known"; |
| 2400 | invalid_chunk[0] = (uint8) (c.type >> 24); |
| 2401 | invalid_chunk[1] = (uint8) (c.type >> 16); |
| 2402 | invalid_chunk[2] = (uint8) (c.type >> 8); |
| 2403 | invalid_chunk[3] = (uint8) (c.type >> 0); |
| 2404 | #endif |
| 2405 | #endif |
| 2406 | return e(invalid_chunk, "PNG not supported: unknown chunk type")e("PNG not supported: unknown chunk type"); |
| 2407 | } |
| 2408 | skip(s, c.length); |
| 2409 | break; |
| 2410 | } |
| 2411 | // end of chunk, read and skip CRC |
| 2412 | get32(s); |
| 2413 | } |
| 2414 | } |
| 2415 | |
| 2416 | static unsigned char *do_png(png *p, int *x, int *y, int *n, int req_comp) |
| 2417 | { |
| 2418 | unsigned char *result=NULL((void*)0); |
| 2419 | p->expanded = NULL((void*)0); |
| 2420 | p->idata = NULL((void*)0); |
| 2421 | p->out = NULL((void*)0); |
| 2422 | if (req_comp < 0 || req_comp > 4) return epuc("bad req_comp", "Internal error")((unsigned char *) (e("Internal error")?((void*)0):((void*)0) )); |
| 2423 | if (parse_png_file(p, SCAN_load, req_comp)) { |
| 2424 | result = p->out; |
| 2425 | p->out = NULL((void*)0); |
| 2426 | if (req_comp && req_comp != p->s.img_out_n) { |
| 2427 | result = convert_format(result, p->s.img_out_n, req_comp, p->s.img_x, p->s.img_y); |
| 2428 | p->s.img_out_n = req_comp; |
| 2429 | if (result == NULL((void*)0)) return result; |
| 2430 | } |
| 2431 | *x = p->s.img_x; |
| 2432 | *y = p->s.img_y; |
| 2433 | if (n) *n = p->s.img_n; |
| 2434 | } |
| 2435 | free(p->out); p->out = NULL((void*)0); |
| 2436 | free(p->expanded); p->expanded = NULL((void*)0); |
| 2437 | free(p->idata); p->idata = NULL((void*)0); |
| 2438 | |
| 2439 | return result; |
| 2440 | } |
| 2441 | |
| 2442 | #ifndef STBI_NO_STDIO |
| 2443 | unsigned char *stbi_png_load_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) |
| 2444 | { |
| 2445 | png p; |
| 2446 | start_file(&p.s, f); |
| 2447 | return do_png(&p, x,y,comp,req_comp); |
| 2448 | } |
| 2449 | |
| 2450 | unsigned char *stbi_png_load(char const *filename, int *x, int *y, int *comp, int req_comp) |
| 2451 | { |
| 2452 | unsigned char *data; |
| 2453 | FILE *f = fopen(filename, "rb"); |
| 2454 | if (!f) return NULL((void*)0); |
| 2455 | data = stbi_png_load_from_file(f,x,y,comp,req_comp); |
| 2456 | fclose(f); |
| 2457 | return data; |
| 2458 | } |
| 2459 | #endif |
| 2460 | |
| 2461 | unsigned char *stbi_png_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) |
| 2462 | { |
| 2463 | png p; |
| 2464 | start_mem(&p.s, buffer,len); |
| 2465 | return do_png(&p, x,y,comp,req_comp); |
| 2466 | } |
| 2467 | |
| 2468 | #ifndef STBI_NO_STDIO |
| 2469 | int stbi_png_test_file(FILE *f) |
| 2470 | { |
| 2471 | png p; |
| 2472 | int n,r; |
| 2473 | n = ftell(f); |
| 2474 | start_file(&p.s, f); |
| 2475 | r = parse_png_file(&p, SCAN_type,STBI_default); |
| 2476 | fseek(f,n,SEEK_SET0); |
| 2477 | return r; |
| 2478 | } |
| 2479 | #endif |
| 2480 | |
| 2481 | int stbi_png_test_memory(stbi_uc const *buffer, int len) |
| 2482 | { |
| 2483 | png p; |
| 2484 | start_mem(&p.s, buffer, len); |
| 2485 | return parse_png_file(&p, SCAN_type,STBI_default); |
| 2486 | } |
| 2487 | |
| 2488 | // TODO: load header from png |
| 2489 | #ifndef STBI_NO_STDIO |
| 2490 | int stbi_png_info (char const *filename, int *x, int *y, int *comp) |
| 2491 | { |
| 2492 | png p; |
| 2493 | FILE *f = fopen(filename, "rb"); |
| 2494 | if (!f) return 0; |
| 2495 | start_file(&p.s, f); |
| 2496 | if (parse_png_file(&p, SCAN_header, 0)) { |
| 2497 | if(x) *x = p.s.img_x; |
| 2498 | if(y) *y = p.s.img_y; |
| 2499 | if (comp) *comp = p.s.img_n; |
| 2500 | fclose(f); |
| 2501 | return 1; |
| 2502 | } |
| 2503 | fclose(f); |
| 2504 | return 0; |
| 2505 | } |
| 2506 | |
| 2507 | extern int stbi_png_info_from_file (FILE *f, int *x, int *y, int *comp); |
| 2508 | #endif |
| 2509 | extern int stbi_png_info_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp); |
| 2510 | |
| 2511 | // Microsoft/Windows BMP image |
| 2512 | |
| 2513 | static int bmp_test(stbi *s) |
| 2514 | { |
| 2515 | int sz; |
| 2516 | if (get8(s) != 'B') return 0; |
| 2517 | if (get8(s) != 'M') return 0; |
| 2518 | get32le(s); // discard filesize |
| 2519 | get16le(s); // discard reserved |
| 2520 | get16le(s); // discard reserved |
| 2521 | get32le(s); // discard data offset |
| 2522 | sz = get32le(s); |
| 2523 | if (sz == 12 || sz == 40 || sz == 56 || sz == 108) return 1; |
| 2524 | return 0; |
| 2525 | } |
| 2526 | |
| 2527 | #ifndef STBI_NO_STDIO |
| 2528 | int stbi_bmp_test_file (FILE *f) |
| 2529 | { |
| 2530 | stbi s; |
| 2531 | int r,n = ftell(f); |
| 2532 | start_file(&s,f); |
| 2533 | r = bmp_test(&s); |
| 2534 | fseek(f,n,SEEK_SET0); |
| 2535 | return r; |
| 2536 | } |
| 2537 | #endif |
| 2538 | |
| 2539 | int stbi_bmp_test_memory (stbi_uc const *buffer, int len) |
| 2540 | { |
| 2541 | stbi s; |
| 2542 | start_mem(&s, buffer, len); |
| 2543 | return bmp_test(&s); |
| 2544 | } |
| 2545 | |
| 2546 | // returns 0..31 for the highest set bit |
| 2547 | static int high_bit(unsigned int z) |
| 2548 | { |
| 2549 | int n=0; |
| 2550 | if (z == 0) return -1; |
| 2551 | if (z >= 0x10000) n += 16, z >>= 16; |
| 2552 | if (z >= 0x00100) n += 8, z >>= 8; |
| 2553 | if (z >= 0x00010) n += 4, z >>= 4; |
| 2554 | if (z >= 0x00004) n += 2, z >>= 2; |
| 2555 | if (z >= 0x00002) n += 1, z >>= 1; |
| 2556 | return n; |
| 2557 | } |
| 2558 | |
| 2559 | static int bitcount(unsigned int a) |
| 2560 | { |
| 2561 | a = (a & 0x55555555) + ((a >> 1) & 0x55555555); // max 2 |
| 2562 | a = (a & 0x33333333) + ((a >> 2) & 0x33333333); // max 4 |
| 2563 | a = (a + (a >> 4)) & 0x0f0f0f0f; // max 8 per 4, now 8 bits |
| 2564 | a = (a + (a >> 8)); // max 16 per 8 bits |
| 2565 | a = (a + (a >> 16)); // max 32 per 8 bits |
| 2566 | return a & 0xff; |
| 2567 | } |
| 2568 | |
| 2569 | static int shiftsigned(int v, int shift, int bits) |
| 2570 | { |
| 2571 | int result; |
| 2572 | int z=0; |
| 2573 | |
| 2574 | if (shift < 0) v <<= -shift; |
| 2575 | else v >>= shift; |
| 2576 | result = v; |
| 2577 | |
| 2578 | z = bits; |
| 2579 | while (z < 8) { |
| 2580 | result += v >> z; |
| 2581 | z += bits; |
| 2582 | } |
| 2583 | return result; |
| 2584 | } |
| 2585 | |
| 2586 | static stbi_uc *bmp_load(stbi *s, int *x, int *y, int *comp, int req_comp) |
| 2587 | { |
| 2588 | uint8 *out; |
| 2589 | unsigned int mr=0,mg=0,mb=0,ma=0; |
| 2590 | stbi_uc pal[256][4]; |
| 2591 | int psize=0,i,j,compress=0,width; |
| 2592 | int bpp, flip_vertically, pad, target, offset, hsz; |
| 2593 | if (get8(s) != 'B' || get8(s) != 'M') return epuc("not BMP", "Corrupt BMP")((unsigned char *) (e("Corrupt BMP")?((void*)0):((void*)0))); |
| 2594 | get32le(s); // discard filesize |
| 2595 | get16le(s); // discard reserved |
| 2596 | get16le(s); // discard reserved |
| 2597 | offset = get32le(s); |
| 2598 | hsz = get32le(s); |
| 2599 | if (hsz != 12 && hsz != 40 && hsz != 56 && hsz != 108) return epuc("unknown BMP", "BMP type not supported: unknown")((unsigned char *) (e("BMP type not supported: unknown")?((void *)0):((void*)0))); |
| 2600 | failure_reason = "bad BMP"; |
| 2601 | if (hsz == 12) { |
| 2602 | s->img_x = get16le(s); |
| 2603 | s->img_y = get16le(s); |
| 2604 | } else { |
| 2605 | s->img_x = get32le(s); |
| 2606 | s->img_y = get32le(s); |
| 2607 | } |
| 2608 | if (get16le(s) != 1) return 0; |
| 2609 | bpp = get16le(s); |
| 2610 | if (bpp == 1) return epuc("monochrome", "BMP type not supported: 1-bit")((unsigned char *) (e("BMP type not supported: 1-bit")?((void *)0):((void*)0))); |
| 2611 | flip_vertically = ((int) s->img_y) > 0; |
| 2612 | s->img_y = abs((int) s->img_y); |
| 2613 | if (hsz == 12) { |
| 2614 | if (bpp < 24) |
| 2615 | psize = (offset - 14 - 24) / 3; |
| 2616 | } else { |
| 2617 | compress = get32le(s); |
| 2618 | if (compress == 1 || compress == 2) return epuc("BMP RLE", "BMP type not supported: RLE")((unsigned char *) (e("BMP type not supported: RLE")?((void*) 0):((void*)0))); |
| 2619 | get32le(s); // discard sizeof |
| 2620 | get32le(s); // discard hres |
| 2621 | get32le(s); // discard vres |
| 2622 | get32le(s); // discard colorsused |
| 2623 | get32le(s); // discard max important |
| 2624 | if (hsz == 40 || hsz == 56) { |
| 2625 | if (hsz == 56) { |
| 2626 | get32le(s); |
| 2627 | get32le(s); |
| 2628 | get32le(s); |
| 2629 | get32le(s); |
| 2630 | } |
| 2631 | if (bpp == 16 || bpp == 32) { |
| 2632 | mr = mg = mb = 0; |
| 2633 | if (compress == 0) { |
| 2634 | if (bpp == 32) { |
| 2635 | mr = 0xff << 16; |
| 2636 | mg = 0xff << 8; |
| 2637 | mb = 0xff << 0; |
| 2638 | ma = 0xff << 24; |
| 2639 | } else { |
| 2640 | mr = 31 << 10; |
| 2641 | mg = 31 << 5; |
| 2642 | mb = 31 << 0; |
| 2643 | } |
| 2644 | } else if (compress == 3) { |
| 2645 | mr = get32le(s); |
| 2646 | mg = get32le(s); |
| 2647 | mb = get32le(s); |
| 2648 | // not documented, but generated by photoshop and handled by mspaint |
| 2649 | if (mr == mg && mg == mb) { |
| 2650 | // ?!?!? |
| 2651 | return NULL((void*)0); |
| 2652 | } |
| 2653 | } else |
| 2654 | return NULL((void*)0); |
| 2655 | } |
| 2656 | } else { |
| 2657 | assert(hsz == 108)((void) (0)); |
| 2658 | mr = get32le(s); |
| 2659 | mg = get32le(s); |
| 2660 | mb = get32le(s); |
| 2661 | ma = get32le(s); |
| 2662 | get32le(s); // discard color space |
| 2663 | for (i=0; i < 12; ++i) |
| 2664 | get32le(s); // discard color space parameters |
| 2665 | } |
| 2666 | if (bpp < 16) |
| 2667 | psize = (offset - 14 - hsz) >> 2; |
| 2668 | } |
| 2669 | s->img_n = ma ? 4 : 3; |
| 2670 | if (req_comp && req_comp >= 3) // we can directly decode 3 or 4 |
| 2671 | target = req_comp; |
| 2672 | else |
| 2673 | target = s->img_n; // if they want monochrome, we'll post-convert |
| 2674 | out = (stbi_uc *) malloc(target * s->img_x * s->img_y); |
| 2675 | if (!out) return epuc("outofmem", "Out of memory")((unsigned char *) (e("Out of memory")?((void*)0):((void*)0)) ); |
| 2676 | if (bpp < 16) { |
| 2677 | int z=0; |
| 2678 | if (psize == 0 || psize > 256) { free(out); return epuc("invalid", "Corrupt BMP")((unsigned char *) (e("Corrupt BMP")?((void*)0):((void*)0))); } |
| 2679 | for (i=0; i < psize; ++i) { |
| 2680 | pal[i][2] = get8(s); |
| 2681 | pal[i][1] = get8(s); |
| 2682 | pal[i][0] = get8(s); |
| 2683 | if (hsz != 12) get8(s); |
| 2684 | pal[i][3] = 255; |
| 2685 | } |
| 2686 | skip(s, offset - 14 - hsz - psize * (hsz == 12 ? 3 : 4)); |
| 2687 | if (bpp == 4) width = (s->img_x + 1) >> 1; |
| 2688 | else if (bpp == 8) width = s->img_x; |
| 2689 | else { free(out); return epuc("bad bpp", "Corrupt BMP")((unsigned char *) (e("Corrupt BMP")?((void*)0):((void*)0))); } |
| 2690 | pad = (-width)&3; |
| 2691 | for (j=0; j < (int) s->img_y; ++j) { |
| 2692 | for (i=0; i < (int) s->img_x; i += 2) { |
| 2693 | int v=get8(s),v2=0; |
| 2694 | if (bpp == 4) { |
| 2695 | v2 = v & 15; |
| 2696 | v >>= 4; |
| 2697 | } |
| 2698 | out[z++] = pal[v][0]; |
| 2699 | out[z++] = pal[v][1]; |
| 2700 | out[z++] = pal[v][2]; |
| 2701 | if (target == 4) out[z++] = 255; |
| 2702 | if (i+1 == (int) s->img_x) break; |
| 2703 | v = (bpp == 8) ? get8(s) : v2; |
| 2704 | out[z++] = pal[v][0]; |
| 2705 | out[z++] = pal[v][1]; |
| 2706 | out[z++] = pal[v][2]; |
| 2707 | if (target == 4) out[z++] = 255; |
| 2708 | } |
| 2709 | skip(s, pad); |
| 2710 | } |
| 2711 | } else { |
| 2712 | int rshift=0,gshift=0,bshift=0,ashift=0,rcount=0,gcount=0,bcount=0,acount=0; |
| 2713 | int z = 0; |
| 2714 | int easy=0; |
| 2715 | skip(s, offset - 14 - hsz); |
| 2716 | if (bpp == 24) width = 3 * s->img_x; |
| 2717 | else if (bpp == 16) width = 2*s->img_x; |
| 2718 | else /* bpp = 32 and pad = 0 */ width=0; |
| 2719 | pad = (-width) & 3; |
| 2720 | if (bpp == 24) { |
| 2721 | easy = 1; |
| 2722 | } else if (bpp == 32) { |
| 2723 | if (mb == 0xff && mg == 0xff00 && mr == 0xff000000 && ma == 0xff000000) |
| 2724 | easy = 2; |
| 2725 | } |
| 2726 | if (!easy) { |
| 2727 | if (!mr || !mg || !mb) return epuc("bad masks", "Corrupt BMP")((unsigned char *) (e("Corrupt BMP")?((void*)0):((void*)0))); |
| 2728 | // right shift amt to put high bit in position #7 |
| 2729 | rshift = high_bit(mr)-7; rcount = bitcount(mr); |
| 2730 | gshift = high_bit(mg)-7; gcount = bitcount(mr); |
| 2731 | bshift = high_bit(mb)-7; bcount = bitcount(mr); |
| 2732 | ashift = high_bit(ma)-7; acount = bitcount(mr); |
| 2733 | } |
| 2734 | for (j=0; j < (int) s->img_y; ++j) { |
| 2735 | if (easy) { |
| 2736 | for (i=0; i < (int) s->img_x; ++i) { |
| 2737 | int a; |
| 2738 | out[z+2] = get8(s); |
| 2739 | out[z+1] = get8(s); |
| 2740 | out[z+0] = get8(s); |
| 2741 | z += 3; |
| 2742 | a = (easy == 2 ? get8(s) : 255); |
| 2743 | if (target == 4) out[z++] = a; |
| 2744 | } |
| 2745 | } else { |
| 2746 | for (i=0; i < (int) s->img_x; ++i) { |
| 2747 | uint32 v = (bpp == 16 ? get16le(s) : get32le(s)); |
| 2748 | int a; |
| 2749 | out[z++] = shiftsigned(v & mr, rshift, rcount); |
| 2750 | out[z++] = shiftsigned(v & mg, gshift, gcount); |
| 2751 | out[z++] = shiftsigned(v & mb, bshift, bcount); |
| 2752 | a = (ma ? shiftsigned(v & ma, ashift, acount) : 255); |
| 2753 | if (target == 4) out[z++] = a; |
| 2754 | } |
| 2755 | } |
| 2756 | skip(s, pad); |
| 2757 | } |
| 2758 | } |
| 2759 | if (flip_vertically) { |
| 2760 | stbi_uc t; |
| 2761 | for (j=0; j < (int) s->img_y>>1; ++j) { |
| 2762 | stbi_uc *p1 = out + j *s->img_x*target; |
| 2763 | stbi_uc *p2 = out + (s->img_y-1-j)*s->img_x*target; |
| 2764 | for (i=0; i < (int) s->img_x*target; ++i) { |
| 2765 | t = p1[i], p1[i] = p2[i], p2[i] = t; |
| 2766 | } |
| 2767 | } |
| 2768 | } |
| 2769 | |
| 2770 | if (req_comp && req_comp != target) { |
| 2771 | out = convert_format(out, target, req_comp, s->img_x, s->img_y); |
| 2772 | if (out == NULL((void*)0)) return out; // convert_format frees input on failure |
| 2773 | } |
| 2774 | |
| 2775 | *x = s->img_x; |
| 2776 | *y = s->img_y; |
| 2777 | if (comp) *comp = target; |
| 2778 | return out; |
| 2779 | } |
| 2780 | |
| 2781 | #ifndef STBI_NO_STDIO |
| 2782 | stbi_uc *stbi_bmp_load (char const *filename, int *x, int *y, int *comp, int req_comp) |
| 2783 | { |
| 2784 | stbi_uc *data; |
| 2785 | FILE *f = fopen(filename, "rb"); |
| 2786 | if (!f) return NULL((void*)0); |
| 2787 | data = stbi_bmp_load_from_file(f, x,y,comp,req_comp); |
| 2788 | fclose(f); |
| 2789 | return data; |
| 2790 | } |
| 2791 | |
| 2792 | stbi_uc *stbi_bmp_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp) |
| 2793 | { |
| 2794 | stbi s; |
| 2795 | start_file(&s, f); |
| 2796 | return bmp_load(&s, x,y,comp,req_comp); |
| 2797 | } |
| 2798 | #endif |
| 2799 | |
| 2800 | stbi_uc *stbi_bmp_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) |
| 2801 | { |
| 2802 | stbi s; |
| 2803 | start_mem(&s, buffer, len); |
| 2804 | return bmp_load(&s, x,y,comp,req_comp); |
| 2805 | } |
| 2806 | |
| 2807 | // Targa Truevision - TGA |
| 2808 | // by Jonathan Dummer |
| 2809 | |
| 2810 | static int tga_test(stbi *s) |
| 2811 | { |
| 2812 | int sz; |
| 2813 | get8u(s); // discard Offset |
| 2814 | sz = get8u(s); // color type |
| 2815 | if( sz > 1 ) return 0; // only RGB or indexed allowed |
| 2816 | sz = get8u(s); // image type |
| 2817 | if( (sz != 1) && (sz != 2) && (sz != 3) && (sz != 9) && (sz != 10) && (sz != 11) ) return 0; // only RGB or grey allowed, +/- RLE |
| 2818 | get16(s); // discard palette start |
| 2819 | get16(s); // discard palette length |
| 2820 | get8(s); // discard bits per palette color entry |
| 2821 | get16(s); // discard x origin |
| 2822 | get16(s); // discard y origin |
| 2823 | if( get16(s) < 1 ) return 0; // test width |
| 2824 | if( get16(s) < 1 ) return 0; // test height |
| 2825 | sz = get8(s); // bits per pixel |
| 2826 | if( (sz != 8) && (sz != 16) && (sz != 24) && (sz != 32) ) return 0; // only RGB or RGBA or grey allowed |
| 2827 | return 1; // seems to have passed everything |
| 2828 | } |
| 2829 | |
| 2830 | #ifndef STBI_NO_STDIO |
| 2831 | int stbi_tga_test_file (FILE *f) |
| 2832 | { |
| 2833 | stbi s; |
| 2834 | int r,n = ftell(f); |
| 2835 | start_file(&s, f); |
| 2836 | r = tga_test(&s); |
| 2837 | fseek(f,n,SEEK_SET0); |
| 2838 | return r; |
| 2839 | } |
| 2840 | #endif |
| 2841 | |
| 2842 | int stbi_tga_test_memory (stbi_uc const *buffer, int len) |
| 2843 | { |
| 2844 | stbi s; |
| 2845 | start_mem(&s, buffer, len); |
| 2846 | return tga_test(&s); |
| 2847 | } |
| 2848 | |
| 2849 | static stbi_uc *tga_load(stbi *s, int *x, int *y, int *comp, int req_comp) |
| 2850 | { |
| 2851 | // read in the TGA header stuff |
| 2852 | int tga_offset = get8u(s); |
| 2853 | int tga_indexed = get8u(s); |
| 2854 | int tga_image_type = get8u(s); |
| 2855 | int tga_is_RLE = 0; |
| 2856 | int tga_palette_start = get16le(s); |
| 2857 | int tga_palette_len = get16le(s); |
| 2858 | int tga_palette_bits = get8u(s); |
| 2859 | int tga_x_origin = get16le(s); |
| 2860 | int tga_y_origin = get16le(s); |
| 2861 | int tga_width = get16le(s); |
| 2862 | int tga_height = get16le(s); |
| 2863 | int tga_bits_per_pixel = get8u(s); |
| 2864 | int tga_inverted = get8u(s); |
| 2865 | // image data |
| 2866 | unsigned char *tga_data; |
| 2867 | unsigned char *tga_palette = NULL((void*)0); |
| 2868 | int i, j; |
| 2869 | unsigned char raw_data[4]; |
| 2870 | unsigned char trans_data[4] = {0,0,0,0}; |
| 2871 | int RLE_count = 0; |
| 2872 | int RLE_repeating = 0; |
| 2873 | int read_next_pixel = 1; |
| 2874 | // do a tiny bit of precessing |
| 2875 | if( tga_image_type >= 8 ) |
| 2876 | { |
| 2877 | tga_image_type -= 8; |
| 2878 | tga_is_RLE = 1; |
| 2879 | } |
| 2880 | /* int tga_alpha_bits = tga_inverted & 15; */ |
| 2881 | tga_inverted = 1 - ((tga_inverted >> 5) & 1); |
| 2882 | |
| 2883 | // error check |
| 2884 | if( //(tga_indexed) || |
| 2885 | (tga_width < 1) || (tga_height < 1) || |
| 2886 | (tga_image_type < 1) || (tga_image_type > 3) || |
| 2887 | ((tga_bits_per_pixel != 8) && (tga_bits_per_pixel != 16) && |
| 2888 | (tga_bits_per_pixel != 24) && (tga_bits_per_pixel != 32)) |
| 2889 | ) |
| 2890 | { |
| 2891 | return NULL((void*)0); |
| 2892 | } |
| 2893 | |
| 2894 | // If I'm paletted, then I'll use the number of bits from the palette |
| 2895 | if( tga_indexed ) |
| 2896 | { |
| 2897 | tga_bits_per_pixel = tga_palette_bits; |
| 2898 | } |
| 2899 | |
| 2900 | // tga info |
| 2901 | *x = tga_width; |
| 2902 | *y = tga_height; |
| 2903 | if( (req_comp < 1) || (req_comp > 4) ) |
| 2904 | { |
| 2905 | // just use whatever the file was |
| 2906 | req_comp = tga_bits_per_pixel / 8; |
| 2907 | *comp = req_comp; |
| 2908 | } else |
| 2909 | { |
| 2910 | // force a new number of components |
| 2911 | *comp = tga_bits_per_pixel/8; |
| 2912 | } |
| 2913 | tga_data = (unsigned char*)malloc( tga_width * tga_height * req_comp ); |
| 2914 | |
| 2915 | // skip to the data's starting position (offset usually = 0) |
| 2916 | skip(s, tga_offset ); |
| 2917 | // do I need to load a palette? |
| 2918 | if( tga_indexed ) |
| 2919 | { |
| 2920 | // any data to skip? (offset usually = 0) |
| 2921 | skip(s, tga_palette_start ); |
| 2922 | // load the palette |
| 2923 | tga_palette = (unsigned char*)malloc( tga_palette_len * tga_palette_bits / 8 ); |
| 2924 | getn(s, tga_palette, tga_palette_len * tga_palette_bits / 8 ); |
| 2925 | } |
| 2926 | // load the data |
| 2927 | for( i = 0; i < tga_width * tga_height; ++i ) |
| 2928 | { |
| 2929 | // if I'm in RLE mode, do I need to get a RLE chunk? |
| 2930 | if( tga_is_RLE ) |
| 2931 | { |
| 2932 | if( RLE_count == 0 ) |
| 2933 | { |
| 2934 | // yep, get the next byte as a RLE command |
| 2935 | int RLE_cmd = get8u(s); |
| 2936 | RLE_count = 1 + (RLE_cmd & 127); |
| 2937 | RLE_repeating = RLE_cmd >> 7; |
| 2938 | read_next_pixel = 1; |
| 2939 | } else if( !RLE_repeating ) |
| 2940 | { |
| 2941 | read_next_pixel = 1; |
| 2942 | } |
| 2943 | } else |
| 2944 | { |
| 2945 | read_next_pixel = 1; |
| 2946 | } |
| 2947 | // OK, if I need to read a pixel, do it now |
| 2948 | if( read_next_pixel ) |
| 2949 | { |
| 2950 | // load however much data we did have |
| 2951 | if( tga_indexed ) |
| 2952 | { |
| 2953 | // read in 1 byte, then perform the lookup |
| 2954 | int pal_idx = get8u(s); |
| 2955 | if( pal_idx >= tga_palette_len ) |
| 2956 | { |
| 2957 | // invalid index |
| 2958 | pal_idx = 0; |
| 2959 | } |
| 2960 | pal_idx *= tga_bits_per_pixel / 8; |
| 2961 | for( j = 0; j*8 < tga_bits_per_pixel; ++j ) |
| 2962 | { |
| 2963 | raw_data[j] = tga_palette[pal_idx+j]; |
| 2964 | } |
| 2965 | } else |
| 2966 | { |
| 2967 | // read in the data raw |
| 2968 | for( j = 0; j*8 < tga_bits_per_pixel; ++j ) |
| 2969 | { |
| 2970 | raw_data[j] = get8u(s); |
| 2971 | } |
| 2972 | } |
| 2973 | // convert raw to the intermediate format |
| 2974 | switch( tga_bits_per_pixel ) |
| 2975 | { |
| 2976 | case 8: |
| 2977 | // Luminous => RGBA |
| 2978 | trans_data[0] = raw_data[0]; |
| 2979 | trans_data[1] = raw_data[0]; |
| 2980 | trans_data[2] = raw_data[0]; |
| 2981 | trans_data[3] = 255; |
| 2982 | break; |
| 2983 | case 16: |
| 2984 | // Luminous,Alpha => RGBA |
| 2985 | trans_data[0] = raw_data[0]; |
| 2986 | trans_data[1] = raw_data[0]; |
| 2987 | trans_data[2] = raw_data[0]; |
| 2988 | trans_data[3] = raw_data[1]; |
| 2989 | break; |
| 2990 | case 24: |
| 2991 | // BGR => RGBA |
| 2992 | trans_data[0] = raw_data[2]; |
| 2993 | trans_data[1] = raw_data[1]; |
| 2994 | trans_data[2] = raw_data[0]; |
| 2995 | trans_data[3] = 255; |
| 2996 | break; |
| 2997 | case 32: |
| 2998 | // BGRA => RGBA |
| 2999 | trans_data[0] = raw_data[2]; |
| 3000 | trans_data[1] = raw_data[1]; |
| 3001 | trans_data[2] = raw_data[0]; |
| 3002 | trans_data[3] = raw_data[3]; |
| 3003 | break; |
| 3004 | default: |
| 3005 | return NULL((void*)0); |
| 3006 | } |
| 3007 | // clear the reading flag for the next pixel |
| 3008 | read_next_pixel = 0; |
| 3009 | } // end of reading a pixel |
| 3010 | // convert to final format |
| 3011 | switch( req_comp ) |
| 3012 | { |
| 3013 | case 1: |
| 3014 | // RGBA => Luminance |
| 3015 | tga_data[i*req_comp+0] = compute_y(trans_data[0],trans_data[1],trans_data[2]); |
| 3016 | break; |
| 3017 | case 2: |
| 3018 | // RGBA => Luminance,Alpha |
| 3019 | tga_data[i*req_comp+0] = compute_y(trans_data[0],trans_data[1],trans_data[2]); |
| 3020 | tga_data[i*req_comp+1] = trans_data[3]; |
| 3021 | break; |
| 3022 | case 3: |
| 3023 | // RGBA => RGB |
| 3024 | tga_data[i*req_comp+0] = trans_data[0]; |
| 3025 | tga_data[i*req_comp+1] = trans_data[1]; |
| 3026 | tga_data[i*req_comp+2] = trans_data[2]; |
| 3027 | break; |
| 3028 | case 4: |
| 3029 | // RGBA => RGBA |
| 3030 | tga_data[i*req_comp+0] = trans_data[0]; |
| 3031 | tga_data[i*req_comp+1] = trans_data[1]; |
| 3032 | tga_data[i*req_comp+2] = trans_data[2]; |
| 3033 | tga_data[i*req_comp+3] = trans_data[3]; |
| 3034 | break; |
| 3035 | } |
| 3036 | // in case we're in RLE mode, keep counting down |
| 3037 | --RLE_count; |
| 3038 | } |
| 3039 | // do I need to invert the image? |
| 3040 | if( tga_inverted ) |
| 3041 | { |
| 3042 | for( j = 0; j*2 < tga_height; ++j ) |
| 3043 | { |
| 3044 | int index1 = j * tga_width * req_comp; |
| 3045 | int index2 = (tga_height - 1 - j) * tga_width * req_comp; |
| 3046 | for( i = tga_width * req_comp; i > 0; --i ) |
| 3047 | { |
| 3048 | unsigned char temp = tga_data[index1]; |
| 3049 | tga_data[index1] = tga_data[index2]; |
| 3050 | tga_data[index2] = temp; |
| 3051 | ++index1; |
| 3052 | ++index2; |
| 3053 | } |
| 3054 | } |
| 3055 | } |
| 3056 | // clear my palette, if I had one |
| 3057 | if( tga_palette != NULL((void*)0) ) |
| 3058 | { |
| 3059 | free( tga_palette ); |
| 3060 | } |
| 3061 | // the things I do to get rid of an error message, and yet keep |
| 3062 | // Microsoft's C compilers happy... [8^( |
| 3063 | tga_palette_start = tga_palette_len = tga_palette_bits = |
Value stored to 'tga_palette_start' is never read | |
| 3064 | tga_x_origin = tga_y_origin = 0; |
| 3065 | // OK, done |
| 3066 | return tga_data; |
| 3067 | } |
| 3068 | |
| 3069 | #ifndef STBI_NO_STDIO |
| 3070 | stbi_uc *stbi_tga_load (char const *filename, int *x, int *y, int *comp, int req_comp) |
| 3071 | { |
| 3072 | stbi_uc *data; |
| 3073 | FILE *f = fopen(filename, "rb"); |
| 3074 | if (!f) return NULL((void*)0); |
| 3075 | data = stbi_tga_load_from_file(f, x,y,comp,req_comp); |
| 3076 | fclose(f); |
| 3077 | return data; |
| 3078 | } |
| 3079 | |
| 3080 | stbi_uc *stbi_tga_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp) |
| 3081 | { |
| 3082 | stbi s; |
| 3083 | start_file(&s, f); |
| 3084 | return tga_load(&s, x,y,comp,req_comp); |
| 3085 | } |
| 3086 | #endif |
| 3087 | |
| 3088 | stbi_uc *stbi_tga_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) |
| 3089 | { |
| 3090 | stbi s; |
| 3091 | start_mem(&s, buffer, len); |
| 3092 | return tga_load(&s, x,y,comp,req_comp); |
| 3093 | } |
| 3094 | |
| 3095 | |
| 3096 | // ************************************************************************************************* |
| 3097 | // Photoshop PSD loader -- PD by Thatcher Ulrich, integration by Nicholas Schulz, tweaked by STB |
| 3098 | |
| 3099 | static int psd_test(stbi *s) |
| 3100 | { |
| 3101 | if (get32(s) != 0x38425053) return 0; // "8BPS" |
| 3102 | else return 1; |
| 3103 | } |
| 3104 | |
| 3105 | #ifndef STBI_NO_STDIO |
| 3106 | int stbi_psd_test_file(FILE *f) |
| 3107 | { |
| 3108 | stbi s; |
| 3109 | int r,n = ftell(f); |
| 3110 | start_file(&s, f); |
| 3111 | r = psd_test(&s); |
| 3112 | fseek(f,n,SEEK_SET0); |
| 3113 | return r; |
| 3114 | } |
| 3115 | #endif |
| 3116 | |
| 3117 | int stbi_psd_test_memory(stbi_uc const *buffer, int len) |
| 3118 | { |
| 3119 | stbi s; |
| 3120 | start_mem(&s, buffer, len); |
| 3121 | return psd_test(&s); |
| 3122 | } |
| 3123 | |
| 3124 | static stbi_uc *psd_load(stbi *s, int *x, int *y, int *comp, int req_comp) |
| 3125 | { |
| 3126 | int pixelCount; |
| 3127 | int channelCount, compression; |
| 3128 | int channel, i, count, len; |
| 3129 | int w,h; |
| 3130 | uint8 *out; |
| 3131 | |
| 3132 | // Check identifier |
| 3133 | if (get32(s) != 0x38425053) // "8BPS" |
| 3134 | return epuc("not PSD", "Corrupt PSD image")((unsigned char *) (e("Corrupt PSD image")?((void*)0):((void* )0))); |
| 3135 | |
| 3136 | // Check file type version. |
| 3137 | if (get16(s) != 1) |
| 3138 | return epuc("wrong version", "Unsupported version of PSD image")((unsigned char *) (e("Unsupported version of PSD image")?((void *)0):((void*)0))); |
| 3139 | |
| 3140 | // Skip 6 reserved bytes. |
| 3141 | skip(s, 6 ); |
| 3142 | |
| 3143 | // Read the number of channels (R, G, B, A, etc). |
| 3144 | channelCount = get16(s); |
| 3145 | if (channelCount < 0 || channelCount > 16) |
| 3146 | return epuc("wrong channel count", "Unsupported number of channels in PSD image")((unsigned char *) (e("Unsupported number of channels in PSD image" )?((void*)0):((void*)0))); |
| 3147 | |
| 3148 | // Read the rows and columns of the image. |
| 3149 | h = get32(s); |
| 3150 | w = get32(s); |
| 3151 | |
| 3152 | // Make sure the depth is 8 bits. |
| 3153 | if (get16(s) != 8) |
| 3154 | return epuc("unsupported bit depth", "PSD bit depth is not 8 bit")((unsigned char *) (e("PSD bit depth is not 8 bit")?((void*)0 ):((void*)0))); |
| 3155 | |
| 3156 | // Make sure the color mode is RGB. |
| 3157 | // Valid options are: |
| 3158 | // 0: Bitmap |
| 3159 | // 1: Grayscale |
| 3160 | // 2: Indexed color |
| 3161 | // 3: RGB color |
| 3162 | // 4: CMYK color |
| 3163 | // 7: Multichannel |
| 3164 | // 8: Duotone |
| 3165 | // 9: Lab color |
| 3166 | if (get16(s) != 3) |
| 3167 | return epuc("wrong color format", "PSD is not in RGB color format")((unsigned char *) (e("PSD is not in RGB color format")?((void *)0):((void*)0))); |
| 3168 | |
| 3169 | // Skip the Mode Data. (It's the palette for indexed color; other info for other modes.) |
| 3170 | skip(s,get32(s) ); |
| 3171 | |
| 3172 | // Skip the image resources. (resolution, pen tool paths, etc) |
| 3173 | skip(s, get32(s) ); |
| 3174 | |
| 3175 | // Skip the reserved data. |
| 3176 | skip(s, get32(s) ); |
| 3177 | |
| 3178 | // Find out if the data is compressed. |
| 3179 | // Known values: |
| 3180 | // 0: no compression |
| 3181 | // 1: RLE compressed |
| 3182 | compression = get16(s); |
| 3183 | if (compression > 1) |
| 3184 | return epuc("bad compression", "PSD has an unknown compression format")((unsigned char *) (e("PSD has an unknown compression format" )?((void*)0):((void*)0))); |
| 3185 | |
| 3186 | // Create the destination image. |
| 3187 | out = (stbi_uc *) malloc(4 * w*h); |
| 3188 | if (!out) return epuc("outofmem", "Out of memory")((unsigned char *) (e("Out of memory")?((void*)0):((void*)0)) ); |
| 3189 | pixelCount = w*h; |
| 3190 | |
| 3191 | // Initialize the data to zero. |
| 3192 | //memset( out, 0, pixelCount * 4 ); |
| 3193 | |
| 3194 | // Finally, the image data. |
| 3195 | if (compression) { |
| 3196 | // RLE as used by .PSD and .TIFF |
| 3197 | // Loop until you get the number of unpacked bytes you are expecting: |
| 3198 | // Read the next source byte into n. |
| 3199 | // If n is between 0 and 127 inclusive, copy the next n+1 bytes literally. |
| 3200 | // Else if n is between -127 and -1 inclusive, copy the next byte -n+1 times. |
| 3201 | // Else if n is 128, noop. |
| 3202 | // Endloop |
| 3203 | |
| 3204 | // The RLE-compressed data is preceeded by a 2-byte data count for each row in the data, |
| 3205 | // which we're going to just skip. |
| 3206 | skip(s, h * channelCount * 2 ); |
| 3207 | |
| 3208 | // Read the RLE data by channel. |
| 3209 | for (channel = 0; channel < 4; channel++) { |
| 3210 | uint8 *p; |
| 3211 | |
| 3212 | p = out+channel; |
| 3213 | if (channel >= channelCount) { |
| 3214 | // Fill this channel with default data. |
| 3215 | for (i = 0; i < pixelCount; i++) *p = (channel == 3 ? 255 : 0), p += 4; |
| 3216 | } else { |
| 3217 | // Read the RLE data. |
| 3218 | count = 0; |
| 3219 | while (count < pixelCount) { |
| 3220 | len = get8(s); |
| 3221 | if (len == 128) { |
| 3222 | // No-op. |
| 3223 | } else if (len < 128) { |
| 3224 | // Copy next len+1 bytes literally. |
| 3225 | len++; |
| 3226 | count += len; |
| 3227 | while (len) { |
| 3228 | *p = get8(s); |
| 3229 | p += 4; |
| 3230 | len--; |
| 3231 | } |
| 3232 | } else if (len > 128) { |
| 3233 | uint32 val; |
| 3234 | // Next -len+1 bytes in the dest are replicated from next source byte. |
| 3235 | // (Interpret len as a negative 8-bit int.) |
| 3236 | len ^= 0x0FF; |
| 3237 | len += 2; |
| 3238 | val = get8(s); |
| 3239 | count += len; |
| 3240 | while (len) { |
| 3241 | *p = val; |
| 3242 | p += 4; |
| 3243 | len--; |
| 3244 | } |
| 3245 | } |
| 3246 | } |
| 3247 | } |
| 3248 | } |
| 3249 | |
| 3250 | } else { |
| 3251 | // We're at the raw image data. It's each channel in order (Red, Green, Blue, Alpha, ...) |
| 3252 | // where each channel consists of an 8-bit value for each pixel in the image. |
| 3253 | |
| 3254 | // Read the data by channel. |
| 3255 | for (channel = 0; channel < 4; channel++) { |
| 3256 | uint8 *p; |
| 3257 | |
| 3258 | p = out + channel; |
| 3259 | if (channel > channelCount) { |
| 3260 | // Fill this channel with default data. |
| 3261 | for (i = 0; i < pixelCount; i++) *p = channel == 3 ? 255 : 0, p += 4; |
| 3262 | } else { |
| 3263 | // Read the data. |
| 3264 | count = 0; |
| 3265 | for (i = 0; i < pixelCount; i++) |
| 3266 | *p = get8(s), p += 4; |
| 3267 | } |
| 3268 | } |
| 3269 | } |
| 3270 | |
| 3271 | if (req_comp && req_comp != 4) { |
| 3272 | out = convert_format(out, 4, req_comp, w, h); |
| 3273 | if (out == NULL((void*)0)) return out; // convert_format frees input on failure |
| 3274 | } |
| 3275 | |
| 3276 | if (comp) *comp = channelCount; |
| 3277 | *y = h; |
| 3278 | *x = w; |
| 3279 | |
| 3280 | return out; |
| 3281 | } |
| 3282 | |
| 3283 | #ifndef STBI_NO_STDIO |
| 3284 | stbi_uc *stbi_psd_load(char const *filename, int *x, int *y, int *comp, int req_comp) |
| 3285 | { |
| 3286 | stbi_uc *data; |
| 3287 | FILE *f = fopen(filename, "rb"); |
| 3288 | if (!f) return NULL((void*)0); |
| 3289 | data = stbi_psd_load_from_file(f, x,y,comp,req_comp); |
| 3290 | fclose(f); |
| 3291 | return data; |
| 3292 | } |
| 3293 | |
| 3294 | stbi_uc *stbi_psd_load_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) |
| 3295 | { |
| 3296 | stbi s; |
| 3297 | start_file(&s, f); |
| 3298 | return psd_load(&s, x,y,comp,req_comp); |
| 3299 | } |
| 3300 | #endif |
| 3301 | |
| 3302 | stbi_uc *stbi_psd_load_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) |
| 3303 | { |
| 3304 | stbi s; |
| 3305 | start_mem(&s, buffer, len); |
| 3306 | return psd_load(&s, x,y,comp,req_comp); |
| 3307 | } |
| 3308 | |
| 3309 | |
| 3310 | // ************************************************************************************************* |
| 3311 | // Radiance RGBE HDR loader |
| 3312 | // originally by Nicolas Schulz |
| 3313 | #ifndef STBI_NO_HDR |
| 3314 | static int hdr_test(stbi *s) |
| 3315 | { |
| 3316 | const char *signature = "#?RADIANCE\n"; |
| 3317 | int i; |
| 3318 | for (i=0; signature[i]; ++i) |
| 3319 | if (get8(s) != signature[i]) |
| 3320 | return 0; |
| 3321 | return 1; |
| 3322 | } |
| 3323 | |
| 3324 | int stbi_hdr_test_memory(stbi_uc const *buffer, int len) |
| 3325 | { |
| 3326 | stbi s; |
| 3327 | start_mem(&s, buffer, len); |
| 3328 | return hdr_test(&s); |
| 3329 | } |
| 3330 | |
| 3331 | #ifndef STBI_NO_STDIO |
| 3332 | int stbi_hdr_test_file(FILE *f) |
| 3333 | { |
| 3334 | stbi s; |
| 3335 | int r,n = ftell(f); |
| 3336 | start_file(&s, f); |
| 3337 | r = hdr_test(&s); |
| 3338 | fseek(f,n,SEEK_SET0); |
| 3339 | return r; |
| 3340 | } |
| 3341 | #endif |
| 3342 | |
| 3343 | #define HDR_BUFLEN1024 1024 |
| 3344 | static char *hdr_gettoken(stbi *z, char *buffer) |
| 3345 | { |
| 3346 | int len=0; |
| 3347 | char c = '\0'; |
| 3348 | |
| 3349 | c = get8(z); |
| 3350 | |
| 3351 | while (!at_eof(z) && c != '\n') { |
| 3352 | buffer[len++] = c; |
| 3353 | if (len == HDR_BUFLEN1024-1) { |
| 3354 | // flush to end of line |
| 3355 | while (!at_eof(z) && get8(z) != '\n') |
| 3356 | ; |
| 3357 | break; |
| 3358 | } |
| 3359 | c = get8(z); |
| 3360 | } |
| 3361 | |
| 3362 | buffer[len] = 0; |
| 3363 | return buffer; |
| 3364 | } |
| 3365 | |
| 3366 | static void hdr_convert(float *output, stbi_uc *input, int req_comp) |
| 3367 | { |
| 3368 | if( input[3] != 0 ) { |
| 3369 | float f1; |
| 3370 | // Exponent |
| 3371 | f1 = (float) ldexp(1.0f, input[3] - (int)(128 + 8)); |
| 3372 | if (req_comp <= 2) |
| 3373 | output[0] = (input[0] + input[1] + input[2]) * f1 / 3; |
| 3374 | else { |
| 3375 | output[0] = input[0] * f1; |
| 3376 | output[1] = input[1] * f1; |
| 3377 | output[2] = input[2] * f1; |
| 3378 | } |
| 3379 | if (req_comp == 2) output[1] = 1; |
| 3380 | if (req_comp == 4) output[3] = 1; |
| 3381 | } else { |
| 3382 | switch (req_comp) { |
| 3383 | case 4: output[3] = 1; /* fallthrough */ |
| 3384 | case 3: output[0] = output[1] = output[2] = 0; |
| 3385 | break; |
| 3386 | case 2: output[1] = 1; /* fallthrough */ |
| 3387 | case 1: output[0] = 0; |
| 3388 | break; |
| 3389 | } |
| 3390 | } |
| 3391 | } |
| 3392 | |
| 3393 | |
| 3394 | static float *hdr_load(stbi *s, int *x, int *y, int *comp, int req_comp) |
| 3395 | { |
| 3396 | char buffer[HDR_BUFLEN1024]; |
| 3397 | char *token; |
| 3398 | int valid = 0; |
| 3399 | int width, height; |
| 3400 | stbi_uc *scanline; |
| 3401 | float *hdr_data; |
| 3402 | int len; |
| 3403 | unsigned char count, value; |
| 3404 | int i, j, k, c1,c2, z; |
| 3405 | |
| 3406 | |
| 3407 | // Check identifier |
| 3408 | if (strcmp(hdr_gettoken(s,buffer), "#?RADIANCE") != 0) |
| 3409 | return epf("not HDR", "Corrupt HDR image")((float *) (e("Corrupt HDR image")?((void*)0):((void*)0))); |
| 3410 | |
| 3411 | // Parse header |
| 3412 | while(1) { |
| 3413 | token = hdr_gettoken(s,buffer); |
| 3414 | if (token[0] == 0) break; |
| 3415 | if (strcmp(token, "FORMAT=32-bit_rle_rgbe") == 0) valid = 1; |
| 3416 | } |
| 3417 | |
| 3418 | if (!valid) return epf("unsupported format", "Unsupported HDR format")((float *) (e("Unsupported HDR format")?((void*)0):((void*)0) )); |
| 3419 | |
| 3420 | // Parse width and height |
| 3421 | // can't use sscanf() if we're not using stdio! |
| 3422 | token = hdr_gettoken(s,buffer); |
| 3423 | if (strncmp(token, "-Y ", 3)) return epf("unsupported data layout", "Unsupported HDR format")((float *) (e("Unsupported HDR format")?((void*)0):((void*)0) )); |
| 3424 | token += 3; |
| 3425 | height = strtol(token, &token, 10); |
| 3426 | while (*token == ' ') ++token; |
| 3427 | if (strncmp(token, "+X ", 3)) return epf("unsupported data layout", "Unsupported HDR format")((float *) (e("Unsupported HDR format")?((void*)0):((void*)0) )); |
| 3428 | token += 3; |
| 3429 | width = strtol(token, NULL((void*)0), 10); |
| 3430 | |
| 3431 | *x = width; |
| 3432 | *y = height; |
| 3433 | |
| 3434 | *comp = 3; |
| 3435 | if (req_comp == 0) req_comp = 3; |
| 3436 | |
| 3437 | // Read data |
| 3438 | hdr_data = (float *) malloc(height * width * req_comp * sizeof(float)); |
| 3439 | |
| 3440 | // Load image data |
| 3441 | // image data is stored as some number of sca |
| 3442 | if( width < 8 || width >= 32768) { |
| 3443 | // Read flat data |
| 3444 | for (j=0; j < height; ++j) { |
| 3445 | for (i=0; i < width; ++i) { |
| 3446 | stbi_uc rgbe[4]; |
| 3447 | main_decode_loop: |
| 3448 | getn(s, rgbe, 4); |
| 3449 | hdr_convert(hdr_data + j * width * req_comp + i * req_comp, rgbe, req_comp); |
| 3450 | } |
| 3451 | } |
| 3452 | } else { |
| 3453 | // Read RLE-encoded data |
| 3454 | scanline = NULL((void*)0); |
| 3455 | |
| 3456 | for (j = 0; j < height; ++j) { |
| 3457 | c1 = get8(s); |
| 3458 | c2 = get8(s); |
| 3459 | len = get8(s); |
| 3460 | if (c1 != 2 || c2 != 2 || (len & 0x80)) { |
| 3461 | // not run-length encoded, so we have to actually use THIS data as a decoded |
| 3462 | // pixel (note this can't be a valid pixel--one of RGB must be >= 128) |
| 3463 | stbi_uc rgbe[4] = { c1,c2,len, get8(s) }; |
| 3464 | hdr_convert(hdr_data, rgbe, req_comp); |
| 3465 | i = 1; |
| 3466 | j = 0; |
| 3467 | free(scanline); |
| 3468 | goto main_decode_loop; // yes, this is fucking insane; blame the fucking insane format |
| 3469 | } |
| 3470 | len <<= 8; |
| 3471 | len |= get8(s); |
| 3472 | if (len != width) { free(hdr_data); free(scanline); return epf("invalid decoded scanline length", "corrupt HDR")((float *) (e("corrupt HDR")?((void*)0):((void*)0))); } |
| 3473 | if (scanline == NULL((void*)0)) scanline = (stbi_uc *) malloc(width * 4); |
| 3474 | |
| 3475 | for (k = 0; k < 4; ++k) { |
| 3476 | i = 0; |
| 3477 | while (i < width) { |
| 3478 | count = get8(s); |
| 3479 | if (count > 128) { |
| 3480 | // Run |
| 3481 | value = get8(s); |
| 3482 | count -= 128; |
| 3483 | for (z = 0; z < count; ++z) |
| 3484 | scanline[i++ * 4 + k] = value; |
| 3485 | } else { |
| 3486 | // Dump |
| 3487 | for (z = 0; z < count; ++z) |
| 3488 | scanline[i++ * 4 + k] = get8(s); |
| 3489 | } |
| 3490 | } |
| 3491 | } |
| 3492 | for (i=0; i < width; ++i) |
| 3493 | hdr_convert(hdr_data+(j*width + i)*req_comp, scanline + i*4, req_comp); |
| 3494 | } |
| 3495 | free(scanline); |
| 3496 | } |
| 3497 | |
| 3498 | return hdr_data; |
| 3499 | } |
| 3500 | |
| 3501 | static stbi_uc *hdr_load_rgbe(stbi *s, int *x, int *y, int *comp, int req_comp) |
| 3502 | { |
| 3503 | char buffer[HDR_BUFLEN1024]; |
| 3504 | char *token; |
| 3505 | int valid = 0; |
| 3506 | int width, height; |
| 3507 | stbi_uc *scanline; |
| 3508 | stbi_uc *rgbe_data; |
| 3509 | int len; |
| 3510 | unsigned char count, value; |
| 3511 | int i, j, k, c1,c2, z; |
| 3512 | |
| 3513 | |
| 3514 | // Check identifier |
| 3515 | if (strcmp(hdr_gettoken(s,buffer), "#?RADIANCE") != 0) |
| 3516 | return epuc("not HDR", "Corrupt HDR image")((unsigned char *) (e("Corrupt HDR image")?((void*)0):((void* )0))); |
| 3517 | |
| 3518 | // Parse header |
| 3519 | while(1) { |
| 3520 | token = hdr_gettoken(s,buffer); |
| 3521 | if (token[0] == 0) break; |
| 3522 | if (strcmp(token, "FORMAT=32-bit_rle_rgbe") == 0) valid = 1; |
| 3523 | } |
| 3524 | |
| 3525 | if (!valid) return epuc("unsupported format", "Unsupported HDR format")((unsigned char *) (e("Unsupported HDR format")?((void*)0):(( void*)0))); |
| 3526 | |
| 3527 | // Parse width and height |
| 3528 | // can't use sscanf() if we're not using stdio! |
| 3529 | token = hdr_gettoken(s,buffer); |
| 3530 | if (strncmp(token, "-Y ", 3)) return epuc("unsupported data layout", "Unsupported HDR format")((unsigned char *) (e("Unsupported HDR format")?((void*)0):(( void*)0))); |
| 3531 | token += 3; |
| 3532 | height = strtol(token, &token, 10); |
| 3533 | while (*token == ' ') ++token; |
| 3534 | if (strncmp(token, "+X ", 3)) return epuc("unsupported data layout", "Unsupported HDR format")((unsigned char *) (e("Unsupported HDR format")?((void*)0):(( void*)0))); |
| 3535 | token += 3; |
| 3536 | width = strtol(token, NULL((void*)0), 10); |
| 3537 | |
| 3538 | *x = width; |
| 3539 | *y = height; |
| 3540 | |
| 3541 | // RGBE _MUST_ come out as 4 components |
| 3542 | *comp = 4; |
| 3543 | req_comp = 4; |
| 3544 | |
| 3545 | // Read data |
| 3546 | rgbe_data = (stbi_uc *) malloc(height * width * req_comp * sizeof(stbi_uc)); |
| 3547 | // point to the beginning |
| 3548 | scanline = rgbe_data; |
| 3549 | |
| 3550 | // Load image data |
| 3551 | // image data is stored as some number of scan lines |
| 3552 | if( width < 8 || width >= 32768) { |
| 3553 | // Read flat data |
| 3554 | for (j=0; j < height; ++j) { |
| 3555 | for (i=0; i < width; ++i) { |
| 3556 | main_decode_loop: |
| 3557 | //getn(rgbe, 4); |
| 3558 | getn(s,scanline, 4); |
| 3559 | scanline += 4; |
| 3560 | } |
| 3561 | } |
| 3562 | } else { |
| 3563 | // Read RLE-encoded data |
| 3564 | for (j = 0; j < height; ++j) { |
| 3565 | c1 = get8(s); |
| 3566 | c2 = get8(s); |
| 3567 | len = get8(s); |
| 3568 | if (c1 != 2 || c2 != 2 || (len & 0x80)) { |
| 3569 | // not run-length encoded, so we have to actually use THIS data as a decoded |
| 3570 | // pixel (note this can't be a valid pixel--one of RGB must be >= 128) |
| 3571 | scanline[0] = c1; |
| 3572 | scanline[1] = c2; |
| 3573 | scanline[2] = len; |
| 3574 | scanline[3] = get8(s); |
| 3575 | scanline += 4; |
| 3576 | i = 1; |
| 3577 | j = 0; |
| 3578 | goto main_decode_loop; // yes, this is insane; blame the insane format |
| 3579 | } |
| 3580 | len <<= 8; |
| 3581 | len |= get8(s); |
| 3582 | if (len != width) { free(rgbe_data); return epuc("invalid decoded scanline length", "corrupt HDR")((unsigned char *) (e("corrupt HDR")?((void*)0):((void*)0))); } |
| 3583 | for (k = 0; k < 4; ++k) { |
| 3584 | i = 0; |
| 3585 | while (i < width) { |
| 3586 | count = get8(s); |
| 3587 | if (count > 128) { |
| 3588 | // Run |
| 3589 | value = get8(s); |
| 3590 | count -= 128; |
| 3591 | for (z = 0; z < count; ++z) |
| 3592 | scanline[i++ * 4 + k] = value; |
| 3593 | } else { |
| 3594 | // Dump |
| 3595 | for (z = 0; z < count; ++z) |
| 3596 | scanline[i++ * 4 + k] = get8(s); |
| 3597 | } |
| 3598 | } |
| 3599 | } |
| 3600 | // move the scanline on |
| 3601 | scanline += 4 * width; |
| 3602 | } |
| 3603 | } |
| 3604 | |
| 3605 | return rgbe_data; |
| 3606 | } |
| 3607 | |
| 3608 | #ifndef STBI_NO_STDIO |
| 3609 | float *stbi_hdr_load_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) |
| 3610 | { |
| 3611 | stbi s; |
| 3612 | start_file(&s,f); |
| 3613 | return hdr_load(&s,x,y,comp,req_comp); |
| 3614 | } |
| 3615 | |
| 3616 | stbi_uc *stbi_hdr_load_rgbe_file(FILE *f, int *x, int *y, int *comp, int req_comp) |
| 3617 | { |
| 3618 | stbi s; |
| 3619 | start_file(&s,f); |
| 3620 | return hdr_load_rgbe(&s,x,y,comp,req_comp); |
| 3621 | } |
| 3622 | |
| 3623 | stbi_uc *stbi_hdr_load_rgbe (char const *filename, int *x, int *y, int *comp, int req_comp) |
| 3624 | { |
| 3625 | FILE *f = fopen(filename, "rb"); |
| 3626 | unsigned char *result; |
| 3627 | if (!f) return epuc("can't fopen", "Unable to open file")((unsigned char *) (e("Unable to open file")?((void*)0):((void *)0))); |
| 3628 | result = stbi_hdr_load_rgbe_file(f,x,y,comp,req_comp); |
| 3629 | fclose(f); |
| 3630 | return result; |
| 3631 | } |
| 3632 | #endif |
| 3633 | |
| 3634 | float *stbi_hdr_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) |
| 3635 | { |
| 3636 | stbi s; |
| 3637 | start_mem(&s,buffer, len); |
| 3638 | return hdr_load(&s,x,y,comp,req_comp); |
| 3639 | } |
| 3640 | |
| 3641 | stbi_uc *stbi_hdr_load_rgbe_memory(stbi_uc *buffer, int len, int *x, int *y, int *comp, int req_comp) |
| 3642 | { |
| 3643 | stbi s; |
| 3644 | start_mem(&s,buffer, len); |
| 3645 | return hdr_load_rgbe(&s,x,y,comp,req_comp); |
| 3646 | } |
| 3647 | |
| 3648 | #endif // STBI_NO_HDR |
| 3649 | |
| 3650 | /////////////////////// write image /////////////////////// |
| 3651 | |
| 3652 | #ifndef STBI_NO_WRITE |
| 3653 | |
| 3654 | static void write8(FILE *f, int x) { uint8 z = (uint8) x; fwrite(&z,1,1,f); } |
| 3655 | |
| 3656 | static void writefv(FILE *f, const char *fmt, va_list v) |
| 3657 | { |
| 3658 | while (*fmt) { |
| 3659 | switch (*fmt++) { |
| 3660 | case ' ': break; |
| 3661 | case '1': { uint8 x = va_arg(v, int)__builtin_va_arg(v, int); write8(f,x); break; } |
| 3662 | case '2': { int16 x = va_arg(v, int)__builtin_va_arg(v, int); write8(f,x); write8(f,x>>8); break; } |
| 3663 | case '4': { int32 x = va_arg(v, int)__builtin_va_arg(v, int); write8(f,x); write8(f,x>>8); write8(f,x>>16); write8(f,x>>24); break; } |
| 3664 | default: |
| 3665 | assert(0)((void) (0)); |
| 3666 | va_end(v)__builtin_va_end(v); |
| 3667 | return; |
| 3668 | } |
| 3669 | } |
| 3670 | } |
| 3671 | |
| 3672 | static void writef(FILE *f, const char *fmt, ...) |
| 3673 | { |
| 3674 | va_list v; |
| 3675 | va_start(v, fmt)__builtin_va_start(v, fmt); |
| 3676 | writefv(f,fmt,v); |
| 3677 | va_end(v)__builtin_va_end(v); |
| 3678 | } |
| 3679 | |
| 3680 | static void write_pixels(FILE *f, int rgb_dir, int vdir, int x, int y, int comp, void *data, int write_alpha, int scanline_pad) |
| 3681 | { |
| 3682 | uint8 bg[3] = { 255, 0, 255}, px[3]; |
| 3683 | uint32 zero = 0; |
| 3684 | int i,j,k, j_end; |
| 3685 | |
| 3686 | if (vdir < 0) |
| 3687 | j_end = -1, j = y-1; |
| 3688 | else |
| 3689 | j_end = y, j = 0; |
| 3690 | |
| 3691 | for (; j != j_end; j += vdir) { |
| 3692 | for (i=0; i < x; ++i) { |
| 3693 | uint8 *d = (uint8 *) data + (j*x+i)*comp; |
| 3694 | if (write_alpha < 0) |
| 3695 | fwrite(&d[comp-1], 1, 1, f); |
| 3696 | switch (comp) { |
| 3697 | case 1: |
| 3698 | case 2: writef(f, "111", d[0],d[0],d[0]); |
| 3699 | break; |
| 3700 | case 4: |
| 3701 | if (!write_alpha) { |
| 3702 | for (k=0; k < 3; ++k) |
| 3703 | px[k] = bg[k] + ((d[k] - bg[k]) * d[3])/255; |
| 3704 | writef(f, "111", px[1-rgb_dir],px[1],px[1+rgb_dir]); |
| 3705 | break; |
| 3706 | } |
| 3707 | /* FALLTHROUGH */ |
| 3708 | case 3: |
| 3709 | writef(f, "111", d[1-rgb_dir],d[1],d[1+rgb_dir]); |
| 3710 | break; |
| 3711 | } |
| 3712 | if (write_alpha > 0) |
| 3713 | fwrite(&d[comp-1], 1, 1, f); |
| 3714 | } |
| 3715 | fwrite(&zero,scanline_pad,1,f); |
| 3716 | } |
| 3717 | } |
| 3718 | |
| 3719 | static int outfile(char const *filename, int rgb_dir, int vdir, int x, int y, int comp, void *data, int alpha, int pad, const char *fmt, ...) |
| 3720 | { |
| 3721 | FILE *f = fopen(filename, "wb"); |
| 3722 | if (f) { |
| 3723 | va_list v; |
| 3724 | va_start(v, fmt)__builtin_va_start(v, fmt); |
| 3725 | writefv(f, fmt, v); |
| 3726 | va_end(v)__builtin_va_end(v); |
| 3727 | write_pixels(f,rgb_dir,vdir,x,y,comp,data,alpha,pad); |
| 3728 | fclose(f); |
| 3729 | } |
| 3730 | return f != NULL((void*)0); |
| 3731 | } |
| 3732 | |
| 3733 | int stbi_write_bmp(char const *filename, int x, int y, int comp, void *data) |
| 3734 | { |
| 3735 | int pad = (-x*3) & 3; |
| 3736 | return outfile(filename,-1,-1,x,y,comp,data,0,pad, |
| 3737 | "11 4 22 4" "4 44 22 444444", |
| 3738 | 'B', 'M', 14+40+(x*3+pad)*y, 0,0, 14+40, // file header |
| 3739 | 40, x,y, 1,24, 0,0,0,0,0,0); // bitmap header |
| 3740 | } |
| 3741 | |
| 3742 | int stbi_write_tga(char const *filename, int x, int y, int comp, void *data) |
| 3743 | { |
| 3744 | int has_alpha = !(comp & 1); |
| 3745 | return outfile(filename, -1,-1, x, y, comp, data, has_alpha, 0, |
| 3746 | "111 221 2222 11", 0,0,2, 0,0,0, 0,0,x,y, 24+8*has_alpha, 8*has_alpha); |
| 3747 | } |
| 3748 | |
| 3749 | // any other image formats that do interleaved rgb data? |
| 3750 | // PNG: requires adler32,crc32 -- significant amount of code |
| 3751 | // PSD: no, channels output separately |
| 3752 | // TIFF: no, stripwise-interleaved... i think |
| 3753 | |
| 3754 | #endif // STBI_NO_WRITE |
| 3755 | |
| 3756 | // add in my DDS loading support |
| 3757 | #ifndef STBI_NO_DDS |
| 3758 | #include "stbi_DDS_aug_c.h" |
| 3759 | #endif |